Calculates a matrix of cross sections for a proton-Hydrogen impact excitation transitions
from the states at energy eb
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=Float64), | intent(in) | :: | eb | Relative collision energy [keV/amu] |
||
integer, | intent(in) | :: | n_max | Number of final atomic energy levels/states |
||
integer, | intent(in) | :: | m_max | Number of initial atomic energy levels/states |
Matrix of cross sections where the subscripts correspond to the transitions: p_excit[n,m] []
function p_excit(eb, n_max, m_max) result(sigma)
!+Calculates a matrix of cross sections for a proton-Hydrogen impact excitation transitions
!+from the \(n=1..n_{max} \rightarrow m=1..m_{max}\) states at energy `eb`
!+
!+###Equation
!+$$ H^+ + H(n=1..n_{max}) \rightarrow H^+ + H(m=1..m_{max}), m \gt n $$
!+
!+###References
!+* Eq. 29.b and Table 4 in Ref. 2 for \(n = 1\) and \(m = 2\) [[atomic_tables(module)]]
!+* Eq. 30 and Table 5 in Ref. 2 for \(n = 1\) and \(m = 3-6\) [[atomic_tables(module)]]
!+* Eq. 31 and Table 5 in Ref. 2 for \(n = 1\) and \(m \gt 6\) [[atomic_tables(module)]]
!+* Eq. 32 and Table 6 in Ref. 2 for \(n = 2\) and \(m \le 5\) [[atomic_tables(module)]]
!+* Eq. 33 and Table 6 in Ref. 2 for \(n = 2\) and \(m = 6-10\) [[atomic_tables(module)]]
!+* Eq. 34 and Table 6 in Ref. 2 for \(n = 2\) and \(m \gt 10\) [[atomic_tables(module)]]
!+* Eq. 35 and Table 7 in Ref. 2 for \(n = 3\) and \(m \le 6\) [[atomic_tables(module)]]
!+* Eq. 36 and Table 7 in Ref. 2 for \(n = 3\) and \(m = 7-10\) [[atomic_tables(module)]]
!+* Eq. 37 and Table 7 in Ref. 2 for \(n = 3\) and \(m \gt 10\) [[atomic_tables(module)]]
!+* Eq. 38-39 in Ref. 2 for \(n \gt 3\) and \(m \gt 4\) [[atomic_tables(module)]]
!+
real(Float64), intent(in) :: eb
!+ Relative collision energy [keV/amu]
integer, intent(in) :: m_max
!+ Number of initial atomic energy levels/states
integer, intent(in) :: n_max
!+ Number of final atomic energy levels/states
real(Float64), dimension(n_max,m_max) :: sigma
!+ Matrix of cross sections where the subscripts correspond
!+ to the \(n \rightarrow m\) transitions: p_excit[n,m] [\(cm^2\)]
real(Float64), dimension(12,12) :: sigma_full
integer :: n, m
do n=1,12
sigma_full(n,:) = p_excit_n(eb, n, 12)
enddo
sigma = sigma_full(1:n_max,1:m_max)
end function p_excit