This file contains the routines for calculating atomic cross sections and reaction rates for FIDASIM
!+This file contains the routines for calculating atomic cross sections and reaction rates for FIDASIM module atomic_tables !+Library for calculating atomic cross sections and reaction rate coefficients for Hydrogen interactions !+ !+###References !+ !+1. [W.L. Wiese, M.W. Smith, and B.M. Glennon. *Atomic Transition Probabilities. Volume 1. Hydrogen through Neon*. !+National Bureau of Standards Washington DC Institute for Basic Standards, 1966.](http://www.dtic.mil/dtic/tr/fulltext/u2/634145.pdf) !+2. [R.K. Janev, D. Reiter, and U. Samm. *Collision processes in low-temperature hydrogen plasmas*. !+Forschungszentrum Jülich, Zentralbibliothek, 2003.](http://www.eirene.de/report_4105.pdf) !+3. [M. O'Mullane. *Review of proton impact driven ionisation from the excited levels in neutral hydrogen beams*. !+ADAS note, 2009.](http://www.adas.ac.uk/notes/adas_c09-01.pdf) !+4. [ADAS: Atomic Data and Analysis Structure](http://www.adas.ac.uk/) !+5. [R.K. Janev and J.J. Smith. *Cross sections for collision processes of hydrogen atoms !+with electrons, protons and multiply charged ions.* Atomic and Plasma-Material Interaction Data for Fusion: !+Volume 4, 1993.](http://www-pub.iaea.org/books/IAEABooks/1839/Atomic-and-Plasma-Material-Interaction-Data-for-Fusion) !+6. [Reinhold, C. O., R. E. Olson, and W. Fritsch. *Excitation of atomic hydrogen by fully stripped ions.* !+Physical Review A 41.9 1990.](http://journals.aps.org/pra/abstract/10.1103/PhysRevA.41.4837) !+7. [Bosch, H-S., and G. M. Hale. *Improved formulas for fusion cross-sections and thermal reactivities.* !+ Nuclear fusion 32.4 1992.](http://iopscience.iop.org/article/10.1088/0029-5515/32/4/I07/meta) use H5LT use HDF5 use hdf5_extra IMPLICIT NONE interface bt_maxwellian !+Calculates the reaction rate coefficients given beam energy `eb` and target temperature `T` !+where the velocity distribution of the target is a Maxwellian module procedure bt_maxwellian_eb module procedure bt_maxwellian_n, bt_maxwellian_n_m module procedure bt_maxwellian_q_n, bt_maxwellian_q_n_m end interface integer, parameter, private :: Int32 = 4 !+ Defines a 32 bit integer integer, parameter, private :: Int64 = 8 !+ Defines a 64 bit integer integer, parameter, private :: Float32 = 4 !+ Defines a 32 bit floating point real integer, parameter, private :: Float64 = 8 !+ Defines a 64 bit floating point real real(Float64), parameter :: PI = 3.14159265d0 real(Float64), parameter :: e_amu = 5.485799093287202d-4 !+ Atomic mass of an electron [amu] real(Float64), parameter :: H1_amu = 1.00782504d0 !+ Atomic mass of Hydrogen-1 (protium) [amu] real(Float64), parameter :: H2_amu = 2.0141017778d0 !+ Atomic mass of Hydrogen-2 (deuterium) [amu] real(Float64), parameter :: H3_amu = 3.0160492d0 !+ Atomic mass of Hydrogen-3 (tritium) [amu] real(Float64), parameter :: He3_amu = 3.0160293d0 !+ Atomic mass of Helium-3 [amu] real(Float64), parameter :: B_amu = 10.81d0 !+ Atomic mass of Boron [amu] real(Float64), parameter :: C_amu = 12.011d0 !+ Atomic mass of Carbon [amu] integer, parameter :: B_q = 5 !+ Proton number of Boron integer, parameter :: C_q = 6 !+ Proton number of Carbon real(Float64), dimension(15,15), parameter :: EINSTEIN = reshape([ & !(n,m) 0.d0,4.699d8,5.575d7,1.278d7,4.125d6,1.644d6,7.568d5,3.869d5,2.143d5,1.263d5,7.834d4,5.066d4,3.393d4,2.341d4,1.657d4,&!(:,1) 0.d0,0.d0 ,4.410d7,8.419d6,2.530d6,9.732d5,4.389d5,2.215d5,1.216d5,7.122d4,4.397d4,2.834d4,1.893d4,1.303d4,9.210d3,&!(:,2) 0.d0,0.d0 ,0.d0 ,8.986d6,2.201d6,7.783d5,3.358d5,1.651d5,8.905d4,5.156d4,3.156d4,2.021d4,1.343d4,9.211d3,6.490d3,&!(:,3) 0.d0,0.d0 ,0.d0 ,0.d0 ,2.699d6,7.711d5,3.041d5,1.424d5,7.459d4,4.235d4,2.556d4,1.620d4,1.069d4,7.288d3,5.110d3,&!(:,4) 0.d0,0.d0 ,0.d0 ,0.d0 ,0.d0 ,1.025d6,3.253d5,1.388d5,6.908d4,3.800d4,2.246d4,1.402d4,9.148d3,6.185d3,4.308d3,&!(:,5) 0.d0,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,4.561d5,1.561d5,7.065d4,3.688d4,2.110d4,1.288d4,8.271d3,5.526d3,3.815d3,&!(:,6) 0.d0,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,2.272d5,8.237d4,3.905d4,2.117d4,1.250d4,7.845d3,5.156d3,3.516d3,&!(:,7) 0.d0,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,1.233d5,4.676d4,2.301d4,1.287d4,7.804d3,5.010d3,3.359d3,&!(:,8) 0.d0,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,7.141d4,2.812d4,1.427d4,8.192d3,5.080d3,3.325d3,&!(:,9) 0.d0,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,4.377d4,1.774d4,9.231d3,5.417d3,3.324d3,&!(:,10) 0.d0,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,2.799d4,1.163d4,6.186d3,3.699d3,&!(:,11) 0.d0,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,1.857d4,7.884d3,4.271d3,&!(:,12) 0.d0,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,1.271d4,5.496d3,&!(:,13) 0.d0,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,8.933d3,&!(:,14) 0.d0,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ,0.d0 ]&!(:,15) , [15,15]) !+ Einstein coefficients for spontaneous emission from state initial state `n` to final state `m` !+ !+References: !+ !+* H - Table A in Ref. 1 [[atomic_tables(module)]] contains function p_cx_1_janev(Erel) result(sigma) !+Calculates total cross section for proton-Hydrogen charge exchange interactions from the \(n=1\) state at energy `Erel` !+ !+###Equation !+ $$H^+ + H(1) \rightarrow H(\forall m) + H^+$$ !+###References !+* Eq. 44 and Table 9 in Ref. 2 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: a = [3.2345d0, 2.3588d2, 2.3713d0, & 3.8371d-2, 3.8068d-6, 1.1832d-10 ] !+ Fitting Parameters from Table 9 in Ref. 2 real(Float64), parameter :: n = 1.d0 real(Float64) :: Ehat Ehat = Erel * n**2.0 sigma = (1.d-16*a(1)*(n**4))*log(a(2)/Ehat + a(3)) / & (1.d0+a(4)*Ehat + a(5)*Ehat**(3.5) + a(6)*Ehat**(5.4)) end function p_cx_1_janev function p_cx_2_janev(Erel) result(sigma) !+Calculates total cross section for proton-Hydrogen charge exchange interactions from the \(n=2\) state at energy `Erel` !+ !+###Equation !+ $$H^+ + H(2) \rightarrow H(\forall m) + H^+$$ !+###References !+* Eq. 44 and Table 9 in Ref. 2 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: a = [9.2750d-1, 6.5040d3, 2.0699d1, & 1.3405d-2, 3.0842d-6, 1.1832d-10 ] !+ Fitting Parameters from Table 9 in Ref. 2 real(Float64), parameter :: n = 2.d0 real(Float64) :: Ehat Ehat = Erel * n**2.0 sigma = (1.d-16*a(1)*(n**4))*log(a(2)/Ehat + a(3)) / & (1.d0+a(4)*Ehat + a(5)*Ehat**(3.5) + a(6)*Ehat**(5.4)) end function p_cx_2_janev function p_cx_3_janev(Erel) result(sigma) !+Calculates total cross section for proton-Hydrogen charge exchange interactions from the \(n=3\) state at energy `Erel` !+ !+###Equation !+ $$H^+ + H(3) \rightarrow H(\forall m) + H^+$$ !+###References !+* Eq. 44 and Table 9 in Ref. 2 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: a = [3.7271d-1, 2.7645d6, 1.4857d3, & 1.5720d-3, 3.0842d-6, 1.1832d-10 ] !+ Fitting Parameters from Table 9 in Ref. 2 real(Float64), parameter :: n = 3.d0 real(Float64) :: Ehat Ehat = Erel * n**2.0 sigma = (1.d-16*a(1)*(n**4))*log(a(2)/Ehat + a(3)) / & (1.d0+a(4)*Ehat + a(5)*Ehat**(3.5) + a(6)*Ehat**(5.4)) end function p_cx_3_janev function p_cx_n_janev(Erel, n) result(sigma) !+Calculates cross section for proton-Hydrogen charge exchange interactions from the \(n \geq 4\) state at energy `Erel` !+ !+###Equation !+ $$H^+ + H(n \geq 4) \rightarrow H(\forall m) + H^+$$ !+###References !+* Eq. 44 and Table 9 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] integer, intent(in) :: n !+ Initial atomic energy level/state real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: a = [2.1336d-1, 1.0000d10, 1.3426d6, & 1.8184d-3, 3.0842d-6, 1.1832d-10 ] !+ Fitting Parameters from Table 9 in Ref. 2 real(Float64) :: Ehat if(n.lt.4) then write(*,'(a)') "P_CX_N_JANEV: n cannot be less than 4" stop endif Ehat = Erel * n**2.0 sigma = (1.d-16*a(1)*(n**4))*log(a(2)/Ehat + a(3)) / & (1.d0+a(4)*Ehat + a(5)*Ehat**(3.5) + a(6)*Ehat**(5.4)) end function p_cx_n_janev function p_cx_janev(Erel,n) result(sigma) !+Calculates total cross section for proton-Hydrogen charge exchange interactions from the `n` state at energy `Erel` !+ !+###Equation !+ $$H^+ + H(n) \rightarrow H(m) + H^+$$ !+###References !+* Eq. 44 and Table 9 in Ref. 2 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] integer, intent(in) :: n !+ Initial atomic energy level/state real(Float64) :: sigma !+ Cross Section [\(cm^2\)] integer :: i i = min(n,4) select case (i) case (0) stop case (1) sigma = p_cx_1_janev(Erel) case (2) sigma = p_cx_2_janev(Erel) case (3) sigma = p_cx_3_janev(Erel) case DEFAULT sigma = p_cx_n_janev(Erel, n) end select end function p_cx_janev function p_cx_1_1_adas(Erel) result(sigma) !+Calculates cross section for a proton-Hydrogen charge exchange interaction !+from the \(n=1\) state to the \(m=1\) state at energy `Erel` !+ !+###Equation !+ $$H^+ + H(1) \rightarrow H(1) + H^+$$ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(7), parameter :: a = [-3.496092687d2, 4.724931484d2, & -2.720493064d2, 8.158564625d1, & -1.339790721d1, 1.138706949d0, & -3.914774156d-2 ] real(Float64) :: e, ee, fac, l, p e = Erel*1.d3 if(e.ge.1.d3) then ee = max(e,1.0) fac = 1.d0 else ee = 1.0d3 fac = Erel**(-0.2) endif l = log10(ee) p = a(1) + a(2)*l + a(3)*l**2.0 + a(4)*l**3.0 + & a(5)*l**4.0 + a(6)*l**5.0 + a(7)*l**6.0 sigma = fac*(10.d0**p) end function p_cx_1_1_adas function p_cx_1_2_adas(Erel) result(sigma) !+Calculates cross section for a proton-Hydrogen charge exchange interaction !+from the \(n=1\) state to the \(m=2\) state at energy `Erel` !+ !+###Equation !+ $$H^+ + H(1) \rightarrow H(2) + H^+$$ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(9), parameter :: a = [-4.036239511d3, 6.941235312d3, & -5.186974866d3, 2.194885201d3, & -5.765960509d2, 9.653534186d1, & -1.008066138d1, 6.010731909d-1,& -1.567417031d-2 ] real(Float64) :: e, ee, fac, l, p e = Erel*1.d3 if(e.ge.1.d3) then ee = max(e,1.0) fac = 1.d0 else ee = 1.0d3 fac = Erel**(0.5) endif l = log10(ee) p = a(1) + a(2)*l + a(3)*l**2.0 + a(4)*l**3.0 + & a(5)*l**4.0 + a(6)*l**5.0 + a(7)*l**6.0 + & a(8)*l**7.0 + a(9)*l**8.0 sigma = fac*(10.d0**p) end function p_cx_1_2_adas function p_cx_1_3_adas(Erel) result(sigma) !+Calculates cross section for a proton-Hydrogen charge exchange interaction !+from the \(n=1\) state to the \(m=3\) state at energy `Erel` !+ !+###Equation !+ $$H^+ + H(1) \rightarrow H(3) + H^+$$ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(10), parameter :: a = [7.037287586d4, -1.479161477d5, & 1.370120708d5, -7.343180122d4, & 2.509832081d4, -5.674317075d3, & 8.487767749d2, -8.102284612d1, & 4.480007503d0, -1.093512342d-1 ] real(Float64) :: e, ee, fac, l, p e = Erel*1.d3 if(e.ge.2.d3) then ee = max(e,1.0) fac = 1.d0 else ee = 2.0d3 fac = (Erel**(1.4))/2.8 endif l = log10(ee) p = a(1) + a(2)*l + a(3)*l**2.0 + a(4)*l**3.0 + & a(5)*l**4.0 + a(6)*l**5.0 + a(7)*l**6.0 + & a(8)*l**7.0 + a(9)*l**8.0 + a(10)*l**9.0 sigma = fac*(10.d0**p) end function p_cx_1_3_adas function p_cx_1_4_adas(Erel) result(sigma) !+Calculates cross section for a proton-Hydrogen charge exchange interaction !+from the \(n=1\) state to the \(m=4\) state at energy `Erel` !+ !+###Equation !+ $$H^+ + H(1) \rightarrow H(4) + H^+$$ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(10), parameter :: a = [6.826447557d4, -1.431980004d5, & 1.323968679d5, -7.083995050d4, & 2.417608863d4, -5.458418789d3, & 8.154875237d2, -7.776012846d1, & 4.295431731d0, -1.047567211d-1 ] real(Float64) :: e, ee, fac, l, p e = Erel*1.d3 if(e.ge.2.d3) then ee = max(e,1.0) fac = 1.d0 else ee = 2.0d3 fac = (Erel**(2.0))/4.0 endif l = log10(ee) p = a(1) + a(2)*l + a(3)*l**2.0 + a(4)*l**3.0 + & a(5)*l**4.0 + a(6)*l**5.0 + a(7)*l**6.0 + & a(8)*l**7.0 + a(9)*l**8.0 + a(10)*l**9.0 sigma = fac*(10.d0**p) end function p_cx_1_4_adas function p_cx_1(Erel,m_max) result(sigma) !+Calculates an array of cross section for proton-Hydrogen charge exchange interactions !+from the \(n=1\) state to m = 1..`m_max` states at energy `Erel` !+ !+@note Cross sections are normalized to the total cross sections calculated by !+[[p_cx_janev(proc)]] !+###Equation !+ $$H^+ + H(1) \rightarrow H(m=1..m_{max}) + H^+$$ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] integer, intent(in) :: m_max !+ Number of `m` states to calculate real(Float64), dimension(m_max) :: sigma !+ Array of cross sections where the index refers to the `m`'th state [\(cm^2\)] integer :: i real(Float64) :: norm_fac sigma = 0.d0 do i=1,m_max select case (i) case (1) sigma(1) = p_cx_1_1_adas(Erel) case (2) sigma(2) = p_cx_1_2_adas(Erel) case (3) sigma(3) = p_cx_1_3_adas(Erel) case (4) sigma(4) = p_cx_1_4_adas(Erel) case DEFAULT sigma(i) = 0.d0 end select enddo !Normalize to Janev norm_fac = p_cx_janev(Erel, 1)/sum(sigma) sigma = norm_fac*sigma end function p_cx_1 function p_cx_2_2_adas(Erel) result(sigma) !+Calculates cross section for a proton-Hydrogen charge exchange interaction !+from the \(n=2\) state to the \(m=2\) state at energy `Erel` !+ !+###Equation !+ $$H^+ + H(2) \rightarrow H(2) + H^+$$ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(11), parameter :: a2s = [-1.896015167d6, 4.431727330d6, & -4.627815357d6, 2.843068107d6, & -1.137952956d6, 3.100801094d5, & -5.825744660d4, 7.452319142d3, & -6.212350647d2, 3.047712749d1, & -6.682658463d-1 ] real(Float64), dimension(11), parameter :: a2p = [-1.614213508d5, 3.772469288d5, & -3.924736424d5, 2.393127027d5, & -9.470300966d4, 2.541276100d4, & -4.682860453d3, 5.851219013d2, & -4.744504549d1, 2.254460913d0, & -4.767235839d-2 ] real(Float64), parameter :: n = 2.d0 real(Float64) :: e, ee, fac, l, sigma2s, sigma2p e = Erel * 1.d3 * n**2.0 if(Erel.le.1.5d2) then ee = max(e, 1.d3) fac = 1.d0 else ee = 1.5e5 * n**2.d0 fac = 2.d15 * ((e*1.d-3)**(-5.5)) endif l = log10(ee) sigma2s = a2s(1) + a2s(2)*l + a2s(3)*l**2.0 + a2s(4)*l**3.0 + & a2s(5)*l**4.0 + a2s(6)*l**5.0 + a2s(7)*l**6.0 + & a2s(8)*l**7.0 + a2s(9)*l**8.0 + a2s(10)*l**9.0 + a2s(11)*l**10.0 sigma2s = 10.d0**(sigma2s) sigma2p = a2p(1) + a2p(2)*l + a2p(3)*l**2.0 + a2p(4)*l**3.0 + & a2p(5)*l**4.0 + a2p(6)*l**5.0 + a2p(7)*l**6.0 + & a2p(8)*l**7.0 + a2p(9)*l**8.0 + a2p(10)*l**9.0 + a2p(11)*l**10.0 sigma2p = 10.d0**(sigma2p) sigma = fac*(0.25*sigma2s + 0.75*sigma2p) end function p_cx_2_2_adas function p_cx_2_3_adas(Erel) result(sigma) !+Calculates cross section for a proton-Hydrogen charge exchange interaction !+from the \(n=2\) state to the \(m=3\) state at energy `Erel` !+ !+###Equation !+ $$H^+ + H(2) \rightarrow H(3) + H^+$$ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(11), parameter :: a2s = [-3.513030327d5, 9.281116596d5, & -1.086843398d6, 7.437325055d5, & -3.296609685d5, 9.897503768d4, & -2.039707143d4, 2.850670244d3, & -2.587092857d2, 1.377382945d1, & -3.268306303d-1 ] real(Float64), dimension(11), parameter :: a2p = [-1.901264631d5, 5.124716103d5, & -6.101921504d5, 4.234717934d5, & -1.899866398d5, 5.764464326d4, & -1.199087959d4, 1.689900512d3, & -1.545334374d2, 8.285001228d0, & -1.978656474d-1 ] real(Float64), parameter :: n = 2.d0 real(Float64) :: ee, l, sigma2s, sigma2p ee = max(Erel * 1.d3 * n**2.d0, 1.d3) l = log10(ee) sigma2s = a2s(1) + a2s(2)*l + a2s(3)*l**2.0 + a2s(4)*l**3.0 + & a2s(5)*l**4.0 + a2s(6)*l**5.0 + a2s(7)*l**6.0 + & a2s(8)*l**7.0 + a2s(9)*l**8.0 + a2s(10)*l**9.0 + a2s(11)*l**10.0 sigma2s = 10.d0**(sigma2s) sigma2p = a2p(1) + a2p(2)*l + a2p(3)*l**2.0 + a2p(4)*l**3.0 + & a2p(5)*l**4.0 + a2p(6)*l**5.0 + a2p(7)*l**6.0 + & a2p(8)*l**7.0 + a2p(9)*l**8.0 + a2p(10)*l**9.0 + a2p(11)*l**10.0 sigma2p = 10.d0**(sigma2p) sigma = (0.25*sigma2s + 0.75*sigma2p) end function p_cx_2_3_adas subroutine m_spread(n, m_max, sigma_tot, sigma) !+ Spreads the total charge exchange cross section, `sigma_tot`, !+ among the non-filled m states of `sigma` according to an exponential integer, intent(in) :: n !+ Initial atomic energy level/state integer, intent(in) :: m_max !+ Number of m states in `sigma` real(Float64), intent(in) :: sigma_tot !+ Amount of "cross section" to spread about the non-filled m state of sigma real(Float64), dimension(m_max), intent(inout) :: sigma !+ Array of cross sections from the `n` state to m=1..`m_max` [\(cm^2\)] real(Float64) :: En, Em real(Float64) :: norm_fac real(Float64), dimension(m_max) :: sigma_m integer :: m sigma_m = 0.d0 En = 13.6/(real(n)**2.0) do m=1,m_max Em = 13.6/(real(m)**2.0) if(sigma(m).eq.0.d0) then sigma_m(m) = (sigma_tot/sqrt(2.0*PI))*exp(-0.5*(En-Em)**2.0) endif enddo norm_fac = sigma_tot/sum(sigma_m) do m=1,m_max if(sigma(m).eq.0.d0) sigma(m) = sigma_m(m)*norm_fac if(sigma(m).ne.sigma(m)) sigma(m) = 0.d0 enddo end subroutine m_spread function p_cx_2(Erel,m_max) result(sigma) !+Calculates an array of cross sections for proton-Hydrogen charge exchange interactions !+from the \(n=2\) state to m = 1..`m_max` states at energy `Erel` !+ !+@note !+Cross sections are normalized to the total cross sections calculated by !+[[p_cx_janev(proc)]]. !+ !+@note !+Cross sections for the \(n=2 \rightarrow m=1\) states are calculated via !+equivalence principle using [[p_cx_1_2_adas(proc)]]. !+ !+@note !+Cross Sections for \(m \geq 4\) are calculated by "spreading" their !+expected total cross sections among the \(m \geq 4\) states. !+ !+###Equation !+ $$H^+ + H(2) \rightarrow H(m=1..m_{max}) + H^+$$ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] integer, intent(in) :: m_max !+ Number of `m` states to calculate real(Float64), dimension(m_max) :: sigma !+ Array of cross sections where the index refers to the `m`'th state [\(cm^2\)] real(Float64), parameter :: n2 = 4.d0 integer :: i real(Float64) :: En, Em, sigma_n, norm_fac sigma = 0.d0 do i=1,min(m_max,3) select case (i) case (1) sigma(1) = p_cx_1_2_adas(Erel*n2)/n2 case (2) sigma(2) = p_cx_2_2_adas(Erel) case (3) sigma(3) = p_cx_2_3_adas(Erel) end select enddo sigma_n = max(p_cx_janev(Erel, 2) - sum(sigma), 0.d0) call m_spread(2,m_max,sigma_n,sigma) norm_fac = p_cx_janev(Erel, 2)/sum(sigma) sigma = sigma*norm_fac end function p_cx_2 function p_cx_3_2_adas(Erel) result(sigma) !+Calculates cross section for a proton-Hydrogen charge exchange interaction !+from the \(n=3\) state to the \(m=2\) state at energy `Erel` !+ !+###Equation !+ $$H^+ + H(3) \rightarrow H(2) + H^+$$ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(11), parameter :: a = [-1.149224555d6, 2.750368877d6, & -2.942222842d6, 1.852584954d6, & -7.603284323d5, 2.125284465d5, & -4.097580431d4, 5.380901722d3, & -4.606297192d2, 2.321345254d1, & -5.230186707d-1 ] real(Float64), parameter :: n = 3.0 real(Float64) :: ee, fac, l, p if(Erel.lt.90.0) then ee = max(Erel * 1.d3 * n**2.0, 1.d3) !keV to eV fac = 1.d0 else ee = 90.0 * 1.d3 * n**2.0 fac = 1.d16 * (Erel*n**2.0)**(-5.5) endif l = log10(ee) p = a(1) + a(2)*l + a(3)*l**2.0 + a(4)*l**3.0 + & a(5)*l**4.0 + a(6)*l**5.0 + a(7)*l**6.0 + & a(8)*l**7.0 + a(9)*l**8.0 + a(10)*l**9.0 + a(11)*l**10.d0 sigma = fac*(10.d0**p) end function p_cx_3_2_adas function p_cx_3_3_adas(Erel) result(sigma) !+Calculates cross section for a proton-Hydrogen charge exchange interaction !+from the \(n=3\) state to the \(m=3\) state at energy `Erel` !+ !+###Equation !+ $$H^+ + H(3) \rightarrow H(3) + H^+$$ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(10), parameter :: a = [-4.302808608d4, 9.499298161d4, & -9.264698488d4, 5.236947172d4, & -1.890479538d4, 4.519068626d3, & -7.152485009d2, 7.227063167d1, & -4.230036444d0, 1.092702525d-1 ] real(Float64), parameter :: n = 3.0 real(Float64) :: ee, fac, l, p if(Erel.lt.90.0) then ee = max(Erel * 1.d3 * n**2.0, 1.d3) !keV to eV fac = 1.d0 else ee = 90.0 * 1.d3 * n**2 fac = 0.85d16 *(Erel*n**2.0)**(-5.5) endif l = log10(ee) p = a(1) + a(2)*l + a(3)*l**2.0 + a(4)*l**3.0 + & a(5)*l**4.0 + a(6)*l**5.0 + a(7)*l**6.0 + & a(8)*l**7.0 + a(9)*l**8.0 + a(10)*l**9.0 sigma = fac*(10.d0**p) end function p_cx_3_3_adas function p_cx_3_4_adas(Erel) result(sigma) !+Calculates cross section for a proton-Hydrogen charge exchange interaction !+from the \(n=3\) state to the \(m=4\) state at energy `Erel` !+ !+###Equation !+ $$H^+ + H(3) \rightarrow H(4) + H^+$$ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(9), parameter :: a = [ 1.705303425d4,-3.316878090d4, & 2.792556433d4,-1.330264490d4, & 3.921666688d3,-7.327555138d2, & 8.476342861d1,-5.551987930d0, & 1.577120745d-1 ] real(Float64), parameter :: n = 3.0 real(Float64) :: ee, fac, l, p if(Erel.lt.90.0) then ee = max(Erel * 1.d3 * n**2.0, 1.d3) !keV to eV fac = 1.d0 else ee = 90.0 * 1.d3 * n**2.0 fac = 0.82d16 *(Erel*n**2.0)**(-5.5) endif l = log10(ee) p = a(1) + a(2)*l + a(3)*l**2.0 + a(4)*l**3.0 + & a(5)*l**4.0 + a(6)*l**5.0 + a(7)*l**6.0 + & a(8)*l**7.0 + a(9)*l**8.0 sigma = fac*(10.d0**p) end function p_cx_3_4_adas function p_cx_3_5_adas(Erel) result(sigma) !+Calculates cross section for a proton-Hydrogen charge exchange interaction !+from the \(n=3\) state to the \(m=5\) state at energy `Erel` !+ !+###Equation !+ $$H^+ + H(3) \rightarrow H(5) + H^+$$ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(11), parameter :: a = [-2.786268232d2, 4.269683825d4, & -8.973561028d4, 8.365732310d4, & -4.524587937d4, 1.563630402d4, & -3.580391824d3, 5.432527332d2, & -5.267599631d1, 2.962329657d0, & -7.362649692d-2 ] real(Float64), parameter :: n = 3.0 real(Float64) :: ee, fac, l, p ee = max(Erel * 1.d3 * n**2.0, 1.d3) !keV to eV fac = 1.d0 l = log10(ee) p = a(1) + a(2)*l + a(3)*l**2.0 + a(4)*l**3.0 + & a(5)*l**4.0 + a(6)*l**5.0 + a(7)*l**6.0 + & a(8)*l**7.0 + a(9)*l**8.0 + a(10)*l**9.0 + a(11)*l**10.0 sigma = fac*(10.d0**p) end function p_cx_3_5_adas function p_cx_3_6inf_adas(Erel) result(sigma) !+Calculates total cross section for a proton-Hydrogen charge exchange interaction !+from the \(n=3\) state to \(\forall \; m \geq 6\) states at energy `Erel` !+ !+###Equation !+ $$H^+ + H(3) \rightarrow H(\forall \; m \geq 6) + H^+$$ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(11), parameter :: a = [ 7.146969470d5,-1.665413326d6, & 1.735840441d6,-1.065792786d6, & 4.269334710d5,-1.165954977d5, & 2.198700496d4,-2.827160468d3, & 2.372409350d2,-1.173264972d1, & 2.596865877d-1 ] real(Float64), parameter :: n = 3.0 real(Float64) :: ee, fac, l, p if(Erel.lt.90.0) then ee = max(Erel * 1.d3 * n**2.0, 1.d3) !keV to eV fac = 1.d0 else ee = 90.0 * 1.d3 * n**2.0 fac = 2.d20 *(Erel*n**2.0)**(-7.0) endif l = log10(ee) p = a(1) + a(2)*l + a(3)*l**2.0 + a(4)*l**3.0 + & a(5)*l**4.0 + a(6)*l**5.0 + a(7)*l**6.0 + & a(8)*l**7.0 + a(9)*l**8.0 + a(10)*l**9.0 + a(11)*l**10.0 sigma = fac*(10.d0**p) end function p_cx_3_6inf_adas function p_cx_3(Erel,m_max) result(sigma) !+Calculates an array of cross sections for proton-Hydrogen charge exchange interactions !+from the \(n=3\) state to m = 1..`m_max` states at energy `Erel` !+ !+@note !+Cross sections are normalized to the total cross sections calculated by !+[[p_cx_janev(proc)]]. !+ !+@note !+Cross sections for the \(n=3 \rightarrow m=1\) states are calculated via !+equivalence principle using [[p_cx_1_3_adas(proc)]]. !+ !+@note !+Cross Sections for \(m \geq 6\) are calculated by "spreading" their !+expected total cross sections among the \( m \geq 6\) states. !+ !+###Equation !+ $$H^+ + H(3) \rightarrow H(m=1..m_{max}) + H^+$$ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] integer, intent(in) :: m_max !+ Number of `m` states to calculate real(Float64), dimension(m_max) :: sigma !+ Array of cross sections where the index refers to the `m`'th state [\(cm^2\)] real(Float64), parameter :: n2 = 9.d0 real(Float64) :: eb, En, Em, sigma_m6, norm_fac real(Float64), dimension(m_max) :: sigma1 sigma = 0.d0 sigma1 = 0.d0 sigma1 = p_cx_1(Erel*n2,m_max) sigma(1) = p_cx_1_3_adas(Erel*n2)/n2 sigma(2) = p_cx_3_2_adas(Erel) sigma(3) = p_cx_3_3_adas(Erel) sigma(4) = p_cx_3_4_adas(Erel) if(m_max.ge.5) then sigma(5) = p_cx_3_5_adas(Erel) endif if(m_max.ge.6) then sigma_m6 = p_cx_3_6inf_adas(Erel) call m_spread(3, m_max, sigma_m6, sigma) endif norm_fac = p_cx_janev(Erel, 3)/sum(sigma) sigma = sigma*norm_fac end function p_cx_3 function p_cx_n(Erel, n, m_max) result(sigma) !+Calculates an array of cross sections for proton-Hydrogen charge exchange interactions !+from the `n` state to m = 1..`m_max` states at energy `Erel` !+ !+@note !+Cross sections are normalized to the total cross sections calculated by !+[[p_cx_janev(proc)]]. !+ !+@note !+Cross sections for some transitions are calculated via the equivalence principle or !+by "spreading" their expected total cross sections among the non-filled m states. !+ !+###Equation !+ $$H^+ + H(n) \rightarrow H(m=1..m_{max}) + H^+$$ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] integer, intent(in) :: n !+ Initial atomic energy level/state integer, intent(in) :: m_max !+ Number of `m` states to calculate real(Float64), dimension(m_max) :: sigma !+ Array of cross sections where the index refers to the `m`'th state [\(cm^2\)] real(Float64), dimension(m_max) :: sigma2,sigma3 real(Float64) :: sigma_n,e,norm_fac sigma = 0.d0 select case (n) case (0) stop case (1) sigma = p_cx_1(Erel,m_max) return case (2) sigma = p_cx_2(Erel,m_max) return case (3) sigma = p_cx_3(Erel,m_max) return case (4) e = Erel*n**2.0 sigma2 = p_cx_2(e/(2.0**2.0),m_max) sigma(1) = p_cx_1_4_adas(e/(1.0**2.0))*(1.d0/n)**2.0 sigma(2) = sigma2(4)*(2.d0/n)**2.0 sigma(3) = p_cx_3_4_adas(e/(3.0**2.0))*(3.d0/n)**2.0 case (5) e = Erel*n**2.0 sigma2 = p_cx_2(e/(2.0**2.0),m_max) sigma(2) = sigma2(5)*(2.d0/n)**2.0 sigma(3) = p_cx_3_5_adas(e/(3.0**2.0))*(3.d0/n)**2.0 case (6) e = Erel*n**2.0 sigma2 = p_cx_2(e/(2.0**2.0),m_max) sigma(2) = sigma2(6)*(2.d0/n)**2.0 sigma3 = p_cx_3(e/(3.0**2.0),m_max)*(3.d0/n)**2.0 sigma(3) = sigma3(6) case DEFAULT end select sigma_n = max(p_cx_janev(Erel,n) - sum(sigma),0.0) call m_spread(n, m_max, sigma_n, sigma) norm_fac = p_cx_janev(Erel, n)/sum(sigma) sigma = norm_fac*sigma end function p_cx_n function p_cx_n_m(Erel, n, m) result(sigma) !+Calculates cross section for a proton-Hydrogen charge exchange interaction !+from the `n` state to the `m` state at energy `Erel` !+ !+###Equation !+ $$H^+ + H(n) \rightarrow H(m) + H^+$$ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] integer, intent(in) :: n !+ Initial atomic energy level/state integer, intent(in) :: m !+ Final atomic energy level/state real(Float64) :: sigma !+ Cross Section [\(cm^2\)] integer :: m_max = 12 real(Float64), dimension(12) :: sigma_m sigma_m = p_cx_n(Erel, n, m_max) if(m.le.0) then sigma = sum(sigma_m) else sigma = sigma_m(m) endif end function p_cx_n_m function p_cx(Erel, n_max, m_max) result(sigma) !+Calculates a matrix of cross sections for proton-Hydrogen charge exchange interactions !+from the \(n=1..n_{max} \rightarrow m=1..m_{max}\) states at energy `Erel` !+ !+###Equation !+ $$H^+ + H(n=1..n_{max}) \rightarrow H(m=1..m_{max}) + H^+$$ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: Erel !+ Relative collision energy [keV/amu] integer, intent(in) :: n_max !+ Number of initial atomic energy levels/states integer, intent(in) :: m_max !+ Number of final atomic energy levels/states real(Float64), dimension(n_max,m_max) :: sigma !+ Matrix of cross sections where the subscripts correspond !+ to the \(n \rightarrow m\) transitions: p_cx[n,m] [\(cm^2\)] real(Float64), dimension(12,12) :: sigma_full integer :: n, m do n=1,12 sigma_full(n,:) = p_cx_n(Erel, n, 12) enddo sigma = sigma_full(1:n_max,1:m_max) end function p_cx !proton-Hydrogen impact ionization function p_ioniz_1_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact ionization interaction !+from the \(n=1\) state at energy `eb` !+ !+###Equation !+ $$H^+ + H(1) \rightarrow H^+ + H^+ + e$$ !+###References !+* Eq. 40 and Table 8 in Ref. 2 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(8), parameter :: b = [2.0160d-3, 3.7154d0, & 3.9890d-2, 3.1413d-1, & 2.1254d0, 6.3990d3, & 6.1897d1, 9.2731d3 ] !+ Fitting Parameters from Table 8 in Ref. 2 real(Float64), parameter :: n2 = 1.d0 real(Float64) :: Ehat real(Float64) :: p1, p2, p3 Ehat = eb*n2 p1 = b(1)*(n2)**2.0 p2 = Ehat**b(2) * exp(-b(3)*Ehat) / (1.d0 + b(4)*Ehat**b(5)) p3 = (b(6)* exp(-b(7)/Ehat) *log(1.d0 +b(8)*Ehat) ) /Ehat sigma = 1.0d-16 * p1 * (p2 + p3) end function p_ioniz_1_janev function p_ioniz_2_omullane(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact ionization interaction !+from the \(n=2\) state at energy `eb` !+ !+###Equation !+ $$H^+ + H(2) \rightarrow H^+ + H^+ + e$$ !+###References !+* Eq. 5 and Table 1 in Ref. 3 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(8), parameter :: b = [3.9330d-3, 1.8188d0, & 1.8870d-2, 6.7489d-3, & 1.3768d0, 6.8852d2, & 9.6435d1, 5.6515d23 ] !+ Fitting Parameters from Table 1 in Ref. 3 real(Float64), parameter :: n2 = 4.d0 real(Float64) :: Ehat real(Float64) :: p1, p2, p3 Ehat = eb*n2 p1 = b(1)*(n2)**2.0 p2 = Ehat**b(2) * exp(-b(3)*Ehat) / (1.d0 + b(4)*Ehat**b(5)) p3 = (b(6)* exp(-b(7)/Ehat) *log(1.d0 +b(8)*Ehat) ) /Ehat sigma = 1.0d-16 * p1 * (p2 + p3) end function p_ioniz_2_omullane function p_ioniz_3_omullane(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact ionization interaction !+from the \(n=3\) state at energy `eb` !+ !+###Equation !+ $$H^+ + H(3) \rightarrow H^+ + H^+ + e$$ !+###References !+* Eq. 5 and Table 1 in Ref. 3 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(8), parameter :: b = [1.1076d-2, 1.6197d0, & 6.7154d-3, 5.1188d-3, & 1.8549d0, 2.3696d2, & 7.8286d1, 1.0926d23 ] !+ Fitting Parameters from Table 1 in Ref. 3 real(Float64), parameter :: n2 = 9.d0 real(Float64) :: Ehat real(Float64) :: p1, p2, p3 Ehat = eb*n2 p1 = b(1)*(n2)**2.0 p2 = Ehat**b(2) * exp(-b(3)*Ehat) / (1.d0 + b(4)*Ehat**b(5)) p3 = (b(6)* exp(-b(7)/Ehat) *log(1.d0 +b(8)*Ehat) ) /Ehat sigma = 1.0d-16 * p1 * (p2 + p3) end function p_ioniz_3_omullane function p_ioniz_4_omullane(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact ionization interaction !+from the \(n=4\) state at energy `eb` !+ !+###Equation !+ $$H^+ + H(4) \rightarrow H^+ + H^+ + e$$ !+###References !+* Eq. 5 and Table 1 in Ref. 3 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(8), parameter :: b = [1.1033d-2, 1.6281d0, & 5.5955d-3, 7.2023d-3, & 1.7358d0, 2.2755d2, & 8.6339d1, 3.9151d29 ] !+ Fitting Parameters from Table 1 in Ref. 3 real(Float64), parameter :: n2 = 16.d0 real(Float64) :: Ehat real(Float64) :: p1, p2, p3 Ehat = eb*n2 p1 = b(1)*(n2)**2.0 p2 = Ehat**b(2) * exp(-b(3)*Ehat) / (1.d0 + b(4)*Ehat**b(5)) p3 = (b(6)* exp(-b(7)/Ehat) *log(1.d0 +b(8)*Ehat) ) /Ehat sigma = 1.0d-16 * p1 * (p2 + p3) end function p_ioniz_4_omullane function p_ioniz_5_omullane(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact ionization interaction !+from the \(n=5\) state at energy `eb` !+ !+###Equation !+ $$H^+ + H(5) \rightarrow H^+ + H^+ + e$$ !+###References !+* Eq. 5 and Table 1 in Ref. 3 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(8), parameter :: b = [1.1297d-2, 1.8685d0, & 1.5038d-2, 1.1195d-1, & 1.0538d0, 8.6096d2, & 8.9939d1, 1.9249d4 ] !+ Fitting Parameters from Table 1 in Ref. 3 real(Float64), parameter :: n2 = 25.d0 real(Float64) :: Ehat real(Float64) :: p1, p2, p3 Ehat = eb*n2 p1 = b(1)*(n2)**2.0 p2 = Ehat**b(2) * exp(-b(3)*Ehat) / (1.d0 + b(4)*Ehat**b(5)) p3 = (b(6)* exp(-b(7)/Ehat) *log(1.d0 +b(8)*Ehat) ) /Ehat sigma = 1.0d-16 * p1 * (p2 + p3) end function p_ioniz_5_omullane function p_ioniz_n(eb,n) result(sigma) !+Calculates cross section for a proton-Hydrogen impact ionization interaction !+from the `n`th state at energy `eb` !+ !+###Equation !+ $$H^+ + H(n) \rightarrow H^+ + H^+ + e$$ !+###References !+* Eq. 40 and Table 8 in Ref. 2 for \(n=1\) [[atomic_tables(module)]] !+* Eq. 5 and Table 1 in Ref. 3 for \(n \geq 2\) [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] integer, intent(in) :: n !+ Initial atomic energy level/state real(Float64) :: sigma !+ Cross Section [\(cm^2\)] select case (n) case (0) stop case (1) sigma = p_ioniz_1_janev(eb) case (2) sigma = p_ioniz_2_omullane(eb) case (3) sigma = p_ioniz_3_omullane(eb) case (4) sigma = p_ioniz_4_omullane(eb) case DEFAULT sigma = p_ioniz_5_omullane(eb)*(n/5.d0)**4 end select end function p_ioniz_n function p_ioniz(eb,n_max) result(sigma) !+Calculates an array of cross sections for proton-Hydrogen impact ionization interactions !+from the n = 1..`n_max` state at energy `eb` !+ !+###Equation !+ $$H^+ + H(n=1..n_{max}) \rightarrow H^+ + H^+ + e$$ !+###References !+* Eq. 40 and Table 8 in Ref. 2 for \(n=1\) [[atomic_tables(module)]] !+* Eq. 5 and Table 1 in Ref. 3 for \(n \geq 2\) [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] integer, intent(in) :: n_max !+ Number of initial atomic energy level/state real(Float64), dimension(n_max) :: sigma !+ Array of cross sections where the index refers to the `n`'th state [\(cm^2\)] integer :: i do i=1,n_max sigma(i) = p_ioniz_n(eb,i) enddo end function p_ioniz !! proton-Hydrogen impact excitation function p_excit_1_2_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=1\) state to the \(m=2\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(1) \rightarrow H^+ + H(2) $$ !+ !+###References !+* Eq. 29.b and Table 4 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(10), parameter :: a = [34.433d0, 8.5476d0, & 7.8501d0, -9.2217d0, & 1.8020d-2, 1.6931d0, & 1.9422d-3, 2.9068d0, & 44.507d0, 0.56870d0 ] !+ Fitting parameters from Table 4 in Ref. 2 sigma = 1.d-16 * a(1) * ( a(2)*exp(-a(3)*eb)/(eb**a(4)) + & a(5)*exp(-a(6)/eb)/(1.+a(7)*eb**a(8)) + & exp(-a(9)/eb)*log(1.+a(10)*eb)/eb ) end function p_excit_1_2_janev function p_excit_1_3_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=1\) state to the \(m=3\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(1) \rightarrow H^+ + H(3) $$ !+ !+###References !+* Eq. 30 and Table 5 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(8), parameter :: b = [ 6.1950d0, 5.5162d-3, & 0.29114d0, -4.5264d0, & 6.0311d0, -2.0679d0, & 35.773d0, 0.54818d0 ] !+ Fitting parameters from Table 5 in Ref. 2 sigma = 1.d-16 * b(1) * (b(2)*exp(-b(3)*eb)/ & (eb**b(4)+b(5)*eb**b(6)) + & exp(-b(7)/eb)*log(1.+b(8)*eb)/eb) end function p_excit_1_3_janev function p_excit_1_4_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=1\) state to the \(m=4\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(1) \rightarrow H^+ + H(4) $$ !+ !+###References !+* Eq. 30 and Table 5 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(8), parameter :: b = [2.0661d0, 5.1335d-4, & 0.28953d0, -2.2849d0, & 0.11528d0, -4.8970d0, & 34.975d0, 0.91213d0 ] !+ Fitting parameters from Table 5 in Ref. 2 sigma = 1.d-16 * b(1) * (b(2)*exp(-b(3)*eb)/ & (eb**b(4)+b(5)*eb**b(6)) + & exp(-b(7)/eb)*log(1.+b(8)*eb)/eb) end function p_excit_1_4_janev function p_excit_1_5_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=1\) state to the \(m=5\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(1) \rightarrow H^+ + H(5) $$ !+ !+###References !+* Eq. 30 and Table 5 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(8), parameter :: b = [1.2449d0, 3.0826d-4, & 0.31063d0, -2.4161d0, & 0.024664d0, -6.3726d0, & 32.291d0, 0.21176d0 ] !+ Fitting parameters from Table 5 in Ref. 2 sigma = 1.d-16 * b(1) * (b(2)*exp(-b(3)*eb)/ & (eb**b(4)+b(5)*eb**b(6)) + & exp(-b(7)/eb)*log(1.+b(8)*eb)/eb) end function p_excit_1_5_janev function p_excit_1_6_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=1\) state to the \(m=6\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(1) \rightarrow H^+ + H(6) $$ !+ !+###References !+* Eq. 30 and Table 5 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(8), parameter :: b = [0.63771d0, 3.2949d-4, & 0.25757d0, -2.2950d0, & 0.050796d0, -5.5986d0, & 37.174d0, 0.39265d0 ] !+ Fitting parameters from Table 5 in Ref. 2 sigma = 1.d-16 * b(1) * (b(2)*exp(-b(3)*eb)/ & (eb**b(4)+b(5)*eb**b(6)) + & exp(-b(7)/eb)*log(1.+b(8)*eb)/eb) end function p_excit_1_6_janev function p_excit_1_janev(eb, m_max) result(sigma) !+Calculates an array of cross sections for a proton-Hydrogen impact excitation transitions from !+the \(n=1\) state to the \(m=1..{m_max}\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(1) \rightarrow H^+ + H(m=1..m_{max}), m \gt 1 $$ !+ !+###References !+* Eq. 29.b and Table 4 in Ref. 2 for \(m = 2\) [[atomic_tables(module)]] !+* Eq. 30 and Table 5 in Ref. 2 for \(m = 3-6\) [[atomic_tables(module)]] !+* Eq. 31 and Table 5 in Ref. 2 for \(m \gt 6\) [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] integer, intent(in) :: m_max !+ Number of m states to calculate real(Float64), dimension(m_max) :: sigma !+ Array of cross sections where the m'th index refer to the transition !+ from \(n=1\) to m [\(cm^2\)] integer :: m sigma = 0.d0 do m=1,m_max select case (m) case (1) sigma(1) = 0.d0 case (2) sigma(2) = p_excit_1_2_janev(eb) case (3) sigma(3) = p_excit_1_3_janev(eb) case (4) sigma(4) = p_excit_1_4_janev(eb) case (5) sigma(5) = p_excit_1_5_janev(eb) case (6) sigma(6) = p_excit_1_6_janev(eb) case DEFAULT sigma(m) = p_excit_1_6_janev(eb)*(6.0/real(m))**3.0 end select enddo end function p_excit_1_janev function p_excit_2_3_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=2\) state to the \(m=3\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(2) \rightarrow H^+ + H(3) $$ !+ !+###References !+* Eq. 32 and Table 6 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: c = [394.51d0, 0.013597d0, & 0.16565d0, -0.8949d0, & 21.606d0, 0.62426d0 ] !+ Fitting parameters from Table 6 in Ref. 2 sigma = 1.d-16 * c(1)*(c(2)*exp(-c(3)*eb)/(eb**c(4)) + & exp(-c(5)/eb)*log(1.+c(6)*eb)/eb) end function p_excit_2_3_janev function p_excit_2_4_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=2\) state to the \(m=4\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(2) \rightarrow H^+ + H(4) $$ !+ !+###References !+* Eq. 32 and Table 6 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: c = [50.744d0, 0.014398d0, & 0.31584d0, -1.4799d0, & 19.416d0, 4.0262d0 ] !+ Fitting parameters from Table 6 in Ref. 2 sigma = 1.d-16 * c(1)*(c(2)*exp(-c(3)*eb)/(eb**c(4)) + & exp(-c(5)/eb)*log(1.+c(6)*eb)/eb) end function p_excit_2_4_janev function p_excit_2_5_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=2\) state to the \(m=5\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(2) \rightarrow H^+ + H(5) $$ !+ !+###References !+* Eq. 32 and Table 6 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: c = [18.264d0, 0.013701d0, & 0.31711d0, -1.4775d0, & 18.973d0, 2.9056d0 ] !+ Fitting parameters from Table 6 in Ref. 2 sigma = 1.d-16 * c(1)*(c(2)*exp(-c(3)*eb)/(eb**c(4)) + & exp(-c(5)/eb)*log(1.+c(6)*eb)/eb) end function p_excit_2_5_janev function p_excit_2_6_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=2\) state to the \(m=6\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(2) \rightarrow H^+ + H(6) $$ !+ !+###References !+* Eq. 33 and Table 6 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 4.61d-1 sigma = A*p_excit_2_5_janev(eb) end function p_excit_2_6_janev function p_excit_2_7_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=2\) state to the \(m=7\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(2) \rightarrow H^+ + H(7) $$ !+ !+###References !+* Eq. 33 and Table 6 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 2.475d-1 sigma = A*p_excit_2_5_janev(eb) end function p_excit_2_7_janev function p_excit_2_8_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=2\) state to the \(m=8\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(2) \rightarrow H^+ + H(8) $$ !+ !+###References !+* Eq. 33 and Table 6 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 1.465d-1 sigma = A*p_excit_2_5_janev(eb) end function p_excit_2_8_janev function p_excit_2_9_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=2\) state to the \(m=9\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(2) \rightarrow H^+ + H(9) $$ !+ !+###References !+* Eq. 33 and Table 6 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 9.2d-2 sigma = A*p_excit_2_5_janev(eb) end function p_excit_2_9_janev function p_excit_2_10_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=2\) state to the \(m=10\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(2) \rightarrow H^+ + H(10) $$ !+ !+###References !+* Eq. 33 and Table 6 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 6.05d-2 sigma = A*p_excit_2_5_janev(eb) end function p_excit_2_10_janev function p_excit_2_janev(eb, m_max) result(sigma) !+Calculates an array of cross sections for a proton-Hydrogen impact excitation transitions from !+the \(n=2\) state to the \(m=1..{m_max}\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(2) \rightarrow H^+ + H(m=1..m_{max}), m \gt 2$$ !+ !+###References !+* Eq. 32 and Table 6 in Ref. 2 for \(m \le 5\) [[atomic_tables(module)]] !+* Eq. 33 and Table 6 in Ref. 2 for \(m = 6-10\) [[atomic_tables(module)]] !+* Eq. 34 and Table 6 in Ref. 2 for \(m \gt 10\) [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] integer, intent(in) :: m_max !+ Number of m states to calculate real(Float64), dimension(m_max) :: sigma !+ Array of cross sections where the m'th index refer to the transition !+ from \(n=2\) to m [\(cm^2\)] integer :: m sigma = 0.d0 do m=1,m_max select case (m) case (1) sigma(1) = 0.d0 case (2) sigma(2) = 0.d0 case (3) sigma(3) = p_excit_2_3_janev(eb) case (4) sigma(4) = p_excit_2_4_janev(eb) case (5) sigma(5) = p_excit_2_5_janev(eb) case (6) sigma(6) = p_excit_2_6_janev(eb) case (7) sigma(7) = p_excit_2_7_janev(eb) case (8) sigma(8) = p_excit_2_8_janev(eb) case (9) sigma(9) = p_excit_2_9_janev(eb) case (10) sigma(10) = p_excit_2_10_janev(eb) case DEFAULT sigma(m) = sigma(10)*(10.0/real(m))**3.0 end select enddo end function p_excit_2_janev function p_excit_3_4_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=3\) state to the \(m=4\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(3) \rightarrow H^+ + H(4) $$ !+ !+###References !+* Eq. 35 and Table 7 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: c = [1247.5d0, 0.068781d0, & 0.521176d0, -1.2722d0, & 11.319d0, 2.6235d0 ] !+ Fitting parameters from Table 7 in Ref. 2 sigma = 1.d-16 * c(1)*(c(2)*exp(-c(3)*eb)/(eb**c(4)) + & exp(-c(5)/eb)*log(1.+c(6)*eb)/eb) end function p_excit_3_4_janev function p_excit_3_5_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=3\) state to the \(m=5\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(3) \rightarrow H^+ + H(5) $$ !+ !+###References !+* Eq. 35 and Table 7 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: c = [190.59d0, 0.073307d0, & 0.54177d0, -1.2894d0, & 11.096d0, 2.9098d0 ] !+ Fitting parameters from Table 7 in Ref. 2 sigma = 1.d-16 * c(1)*(c(2)*exp(-c(3)*eb)/(eb**c(4)) + & exp(-c(5)/eb)*log(1.+c(6)*eb)/eb) end function p_excit_3_5_janev function p_excit_3_6_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=3\) state to the \(m=6\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(3) \rightarrow H^+ + H(6) $$ !+ !+###References !+* Eq. 35 and Table 7 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: c = [63.494d0, 0.077953d0, & 0.53461d0, -1.2881d0, & 11.507d0, 4.3417d0 ] !+ Fitting parameters from Table 7 in Ref. 2 sigma = 1.d-16 * c(1)*(c(2)*exp(-c(3)*eb)/(eb**c(4)) + & exp(-c(5)/eb)*log(1.+c(6)*eb)/eb) end function p_excit_3_6_janev function p_excit_3_7_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=3\) state to the \(m=7\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(3) \rightarrow H^+ + H(7) $$ !+ !+###References !+* Eq. 36 and Table 7 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 4.67d-1 sigma = A*p_excit_3_6_janev(eb) end function p_excit_3_7_janev function p_excit_3_8_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=3\) state to the \(m=8\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(3) \rightarrow H^+ + H(8) $$ !+ !+###References !+* Eq. 36 and Table 7 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 2.545d-1 sigma = A*p_excit_3_6_janev(eb) end function p_excit_3_8_janev function p_excit_3_9_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=3\) state to the \(m=9\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(3) \rightarrow H^+ + H(9) $$ !+ !+###References !+* Eq. 36 and Table 7 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 1.54d-1 sigma = A*p_excit_3_6_janev(eb) end function p_excit_3_9_janev function p_excit_3_10_janev(eb) result(sigma) !+Calculates cross section for a proton-Hydrogen impact excitation transition from !+the \(n=3\) state to the \(m=10\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(3) \rightarrow H^+ + H(10) $$ !+ !+###References !+* Eq. 36 and Table 7 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 1.0d-1 sigma = A*p_excit_3_6_janev(eb) end function p_excit_3_10_janev function p_excit_3_janev(eb, m_max) result(sigma) !+Calculates an array of cross sections for proton-Hydrogen impact excitation transitions from !+the \(n=3\) state to the \(m=1..{m_max}\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(3) \rightarrow H^+ + H(m=1..m_{max}), m \gt 3 $$ !+ !+###References !+* Eq. 35 and Table 7 in Ref. 2 for \(m \le 6\) [[atomic_tables(module)]] !+* Eq. 36 and Table 7 in Ref. 2 for \(m = 7-10\) [[atomic_tables(module)]] !+* Eq. 37 and Table 7 in Ref. 2 for \(m \gt 10\) [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] integer, intent(in) :: m_max !+ Number of m states to calculate real(Float64), dimension(m_max) :: sigma !+ Array of cross sections where the m'th index refer to the transition !+ from \(n=3\) to m [\(cm^2\)] integer :: m sigma = 0.d0 do m=1,m_max select case (m) case (1) sigma(1) = 0.d0 case (2) sigma(2) = 0.d0 case (3) sigma(3) = 0.d0 case (4) sigma(4) = p_excit_3_4_janev(eb) case (5) sigma(5) = p_excit_3_5_janev(eb) case (6) sigma(6) = p_excit_3_6_janev(eb) case (7) sigma(7) = p_excit_3_7_janev(eb) case (8) sigma(8) = p_excit_3_8_janev(eb) case (9) sigma(9) = p_excit_3_9_janev(eb) case (10) sigma(10) = p_excit_3_10_janev(eb) case DEFAULT sigma(m) = sigma(10)*(10.0/real(m))**3.0 end select enddo end function p_excit_3_janev function p_excit_n(eb, n, m_max) result(sigma) !+Calculates an array of cross sections for a proton-Hydrogen impact excitation transitions from !+the `n` state to the \(m=1..{m_max}\) state at energy `eb` !+ !+###Equation !+$$ H^+ + H(n) \rightarrow H^+ + H(m=1..m_{max}), m \gt n $$ !+ !+###References !+* Eq. 29.b and Table 4 in Ref. 2 for \(n = 1\) and \(m = 2\) [[atomic_tables(module)]] !+* Eq. 30 and Table 5 in Ref. 2 for \(n = 1\) and \(m = 3-6\) [[atomic_tables(module)]] !+* Eq. 31 and Table 5 in Ref. 2 for \(n = 1\) and \(m \gt 6\) [[atomic_tables(module)]] !+* Eq. 32 and Table 6 in Ref. 2 for \(n = 2\) and \(m \le 5\) [[atomic_tables(module)]] !+* Eq. 33 and Table 6 in Ref. 2 for \(n = 2\) and \(m = 6-10\) [[atomic_tables(module)]] !+* Eq. 34 and Table 6 in Ref. 2 for \(n = 2\) and \(m \gt 10\) [[atomic_tables(module)]] !+* Eq. 35 and Table 7 in Ref. 2 for \(n = 3\) and \(m \le 6\) [[atomic_tables(module)]] !+* Eq. 36 and Table 7 in Ref. 2 for \(n = 3\) and \(m = 7-10\) [[atomic_tables(module)]] !+* Eq. 37 and Table 7 in Ref. 2 for \(n = 3\) and \(m \gt 10\) [[atomic_tables(module)]] !+* Eq. 38-39 in Ref. 2 for \(n \gt 3\) and \(m \gt 4\) [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] integer, intent(in) :: n !+ Initial atomic energy level/state integer, intent(in) :: m_max !+ Number of m states to calculate real(Float64), dimension(m_max) :: sigma !+ Array of cross sections where the m'th index refer to the transition !+ from `n` to m [\(cm^2\)] integer :: m real(Float64) :: nf, mf, Etil, s, D, A, G, L, F real(Float64) :: y, zpl, zmi, C2pl, C2mi, H sigma = 0.d0 select case (n) case (0) stop case (1) sigma = p_excit_1_janev(eb,m_max) case (2) sigma = p_excit_2_janev(eb,m_max) case (3) sigma = p_excit_3_janev(eb,m_max) case DEFAULT nf = real(n) m_loop: do m=1,m_max if(n.ge.m) then sigma(m) = 0.d0 cycle m_loop endif mf = real(m) Etil = Eb/25.0 s = (mf-nf) D = exp(-1.0/(nf*mf*Etil**2.0)) A = 8.0/(3.0*s)*(mf/(s*nf))**3*(0.184-0.04/s**(2.0/3.0)) * & (1.0 - 0.2*s/(nf*mf))**(1.0 + 2.0*s) G = 0.5*( Etil*nf**2.0/(mf - 1.0/mf) )**3. L = log(1.0 + 0.53*Etil**2.0 * nf*(mf - 2.0/mf)/(1.0 + 0.4*Etil)) F = ( 1.0 - 0.3*s*D/(nf*mf) )**(1.0 + 2.0*s) y = 1.0/( 1.0 - D*log(18*s)/(4.0*s) ) zpl = 2.0/(Etil * nf**2 * ( (2.0 - (nf/mf)**2)**0.5 + 1.0)) zmi = 2.0/(Etil * nf**2 * ( (2.0 - (nf/mf)**2)**0.5 - 1.0)) C2pl = zpl**2 * log(1.0 + 2.0*zpl/3.0)/(2.0*y + 3.0*zpl/2.0) C2mi = zmi**2 * log(1.0 + 2.0*zmi/3.0)/(2.0*y + 3.0*zmi/2.0) H = C2mi - C2pl sigma(m) = ((8.8d-17*n**4)/Etil)*(A*L*D + F*G*H) enddo m_loop end select end function p_excit_n function p_excit_n_m(eb, n, m) result(sigma) !+Calculates the cross section for a proton-Hydrogen impact excitation transition from !+the `n` state to the `m` state at energy `eb` !+ !+###Equation !+$$ H^+ + H(n) \rightarrow H^+ + H(m), m \gt n $$ !+ !+###References !+* Eq. 29.b and Table 4 in Ref. 2 for \(n = 1\) and \(m = 2\) [[atomic_tables(module)]] !+* Eq. 30 and Table 5 in Ref. 2 for \(n = 1\) and \(m = 3-6\) [[atomic_tables(module)]] !+* Eq. 31 and Table 5 in Ref. 2 for \(n = 1\) and \(m \gt 6\) [[atomic_tables(module)]] !+* Eq. 32 and Table 6 in Ref. 2 for \(n = 2\) and \(m \le 5\) [[atomic_tables(module)]] !+* Eq. 33 and Table 6 in Ref. 2 for \(n = 2\) and \(m = 6-10\) [[atomic_tables(module)]] !+* Eq. 34 and Table 6 in Ref. 2 for \(n = 2\) and \(m \gt 10\) [[atomic_tables(module)]] !+* Eq. 35 and Table 7 in Ref. 2 for \(n = 3\) and \(m \le 6\) [[atomic_tables(module)]] !+* Eq. 36 and Table 7 in Ref. 2 for \(n = 3\) and \(m = 7-10\) [[atomic_tables(module)]] !+* Eq. 37 and Table 7 in Ref. 2 for \(n = 3\) and \(m \gt 10\) [[atomic_tables(module)]] !+* Eq. 38-39 in Ref. 2 for \(n \gt 3\) and \(m \gt 4\) [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] integer, intent(in) :: n !+ Initial atomic energy level/state integer, intent(in) :: m !+ Final atomic energy level/state real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(12) :: sigma_m sigma_m = p_excit_n(eb, n, 12) if(m.le.0) then sigma = sum(sigma_m) else sigma = sigma_m(m) endif end function p_excit_n_m function p_excit(eb, n_max, m_max) result(sigma) !+Calculates a matrix of cross sections for a proton-Hydrogen impact excitation transitions !+from the \(n=1..n_{max} \rightarrow m=1..m_{max}\) states at energy `eb` !+ !+###Equation !+$$ H^+ + H(n=1..n_{max}) \rightarrow H^+ + H(m=1..m_{max}), m \gt n $$ !+ !+###References !+* Eq. 29.b and Table 4 in Ref. 2 for \(n = 1\) and \(m = 2\) [[atomic_tables(module)]] !+* Eq. 30 and Table 5 in Ref. 2 for \(n = 1\) and \(m = 3-6\) [[atomic_tables(module)]] !+* Eq. 31 and Table 5 in Ref. 2 for \(n = 1\) and \(m \gt 6\) [[atomic_tables(module)]] !+* Eq. 32 and Table 6 in Ref. 2 for \(n = 2\) and \(m \le 5\) [[atomic_tables(module)]] !+* Eq. 33 and Table 6 in Ref. 2 for \(n = 2\) and \(m = 6-10\) [[atomic_tables(module)]] !+* Eq. 34 and Table 6 in Ref. 2 for \(n = 2\) and \(m \gt 10\) [[atomic_tables(module)]] !+* Eq. 35 and Table 7 in Ref. 2 for \(n = 3\) and \(m \le 6\) [[atomic_tables(module)]] !+* Eq. 36 and Table 7 in Ref. 2 for \(n = 3\) and \(m = 7-10\) [[atomic_tables(module)]] !+* Eq. 37 and Table 7 in Ref. 2 for \(n = 3\) and \(m \gt 10\) [[atomic_tables(module)]] !+* Eq. 38-39 in Ref. 2 for \(n \gt 3\) and \(m \gt 4\) [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] integer, intent(in) :: m_max !+ Number of initial atomic energy levels/states integer, intent(in) :: n_max !+ Number of final atomic energy levels/states real(Float64), dimension(n_max,m_max) :: sigma !+ Matrix of cross sections where the subscripts correspond !+ to the \(n \rightarrow m\) transitions: p_excit[n,m] [\(cm^2\)] real(Float64), dimension(12,12) :: sigma_full integer :: n, m do n=1,12 sigma_full(n,:) = p_excit_n(eb, n, 12) enddo sigma = sigma_full(1:n_max,1:m_max) end function p_excit function e_ioniz_1_janev(eb) result(sigma) !+Calculates cross section for a electron-Hydrogen impact ionization from !+the \(n=1\) state at energy `eb` !+ !+###Equation !+$$ e + H(1) \rightarrow e + H^+ + e$$ !+ !+###References !+* Eq. 14 and Table 3 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] integer, parameter :: n = 1 !+ Initial atomic energy level/state real(Float64), dimension(6), parameter :: A = [ 0.18450d0, -0.032226d0, & -0.034539d0, 1.4003d0, & -2.8115d0, 2.2986d0 ] !+ Fitting parameters from Table 3 in Ref. 2 real(Float64) :: Edn2 real(Float64) :: e, x real(Float64) :: s Edn2 = 13.6/real(n)**2 e = eb * 1.d3 !keV to eV x = (1.0 - Edn2/e) s = A(2)*x + A(3)*(x**2.0) + A(4)*(x**3.0) + A(5)*(x**4.0) + A(6)*(x**5.0) sigma = ((1.d-13)/(Edn2*e))*(A(1)*log(e/Edn2) + s) sigma = max(sigma,0.d0) end function e_ioniz_1_janev function e_ioniz_2_janev(eb) result(sigma) !+Calculates cross section for a electron-Hydrogen impact ionization from !+the \(n=2\) state at energy `eb` !+ !+###Equation !+$$ e + H(2) \rightarrow e + H^+ + e$$ !+ !+###References !+* Eq. 14 and Table 3 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] integer, parameter :: n = 2 !+ Initial atomic energy level/state real(Float64), dimension(6), parameter :: A = [ 0.14784d0, 0.0080871d0, & -0.062270d0, 1.9414d0, & -2.1980d0, 0.95894d0 ] !+ Fitting parameters from Table 3 in Ref. 2 real(Float64) :: Edn2 real(Float64) :: e, x real(Float64) :: s Edn2 = 13.6/real(n)**2 e = eb * 1.d3 !keV to eV x = (1.0 - Edn2/e) s = A(2)*x + A(3)*(x**2.0) + A(4)*(x**3.0) + A(5)*(x**4.0) + A(6)*(x**5.0) sigma = ((1.d-13)/(Edn2*e))*(A(1)*log(e/Edn2) + s) sigma = max(sigma, 0.d0) end function e_ioniz_2_janev function e_ioniz_3_janev(eb) result(sigma) !+Calculates cross section for a electron-Hydrogen impact ionization from !+the \(n=3\) state at energy `eb` !+ !+###Equation !+$$ e + H(3) \rightarrow e + H^+ + e$$ !+ !+###References !+* Eq. 14 and Table 3 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] integer, parameter :: n = 3 !+ Initial atomic energy level/state real(Float64), dimension(6), parameter :: A = [0.058463d0, -0.051272d0, & 0.85310d0, -0.57014d0, & 0.76684d0, 0.00d0 ] !+ Fitting parameters from Table 3 in Ref. 2 real(Float64) :: Edn2 real(Float64) :: e, x real(Float64) :: s Edn2 = 13.6/real(n)**2 e = eb * 1.d3 !keV to eV if(e.ge.1.5) then x = (1.0 - Edn2/e) s = A(2)*x + A(3)*(x**2.0) + A(4)*(x**3.0) + A(5)*(x**4.0) + A(6)*(x**5.0) sigma = ((1.d-13)/(Edn2*e))*(A(1)*log(e/Edn2) + s) else sigma = 0.d0 endif end function e_ioniz_3_janev function e_ioniz_n(eb, n) result(sigma) !+Calculates cross section for a electron-Hydrogen impact ionization from !+the `n` state at energy `eb` !+ !+###Equation !+$$ e + H(n) \rightarrow e + H^+ + e$$ !+ !+###References !+* Eq. 14 and Table 3 in Ref. 2 [[atomic_tables(module)]] !+* Eq. 15-16 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: n !+ Initial atomic energy level/state real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64) :: rn, xn, Edn2 real(Float64) :: g0, g1, g2, An, b, Bn select case (n) case (0) stop case (1) sigma = e_ioniz_1_janev(eb) case (2) sigma = e_ioniz_2_janev(eb) case (3) sigma = e_ioniz_3_janev(eb) case DEFAULT rn = 1.94/n**1.57 Edn2 = 13.6/n**2.0 xn = (eb*1.d3)/Edn2 g0 = 0.9935 + 0.2328/n - 0.1296/n**2.0 g1 = -(1.0/n)*(0.6282 - 0.5598/n + 0.5299/n**2.0) g2 = (1.0/n**2.0)*(0.3887 - 1.181/n + 1.47/n**2.0) An = 32.0*n/(3.0*sqrt(3.0)*PI)*(g0/3.0 + g1/4.0 + g2/5.0) b = (1.0/n)*(4.0 - 18.63/n + 36.24/n**2.0 - 28.09/n**3.0) Bn = (2.0/3.0)*(n**2.0)*(5.0 + b) if(xn.gt.1) then sigma = 1.76*n**2/xn*(1.0 - exp(-rn*xn)) * & (An*log(xn) + (Bn - An*log(2.0*n**2)) * & (1.0 - 1.0/xn)**2)*1.e-16 else sigma = 0.d0 endif end select end function e_ioniz_n function e_ioniz(eb, n_max) result(sigma) !+Calculates an array of cross sections for a electron-Hydrogen impact ionization from !+the \(n=1..n_{max}\) states at energy `eb` !+ !+###Equation !+$$ e + H(n=1..n_{max}) \rightarrow e + H^+ + e$$ !+ !+###References !+* Eq. 14 and Table 3 in Ref. 2 [[atomic_tables(module)]] !+* Eq. 15-16 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: n_max !+ Number of initial atomic energy levels/states to calculate real(Float64), dimension(n_max) :: sigma !+ Array of cross sections where the n'th index refers to a ionization from the n'th state [\(cm^2\)] integer :: i do i=1,n_max sigma(i) = e_ioniz_n(eb,i) enddo end function e_ioniz function e_excit_1_2_janev(eb) result(sigma) !+Calculates cross section for a electron-Hydrogen impact excitation transition from !+the \(n=1\) state to the \(m=2\) state at energy `eb` !+ !+###Equation !+$$ e + H(1) \rightarrow e + H(2) $$ !+ !+###References !+* Eq. 4 and Table 1 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: sigma0=5.984d0 real(Float64), parameter :: deltaE=10.2d0 real(Float64), parameter :: a=0.228d0 !+ Fitting parameter from Table 2 in Ref. 2 real(Float64), parameter :: b=0.1865d0 !+ Fitting paramter from Table 2 in Ref. 2 real(Float64), parameter :: c=0.5025d0 !+ Fitting paramter from Table 2 in Ref. 2 real(Float64), dimension(6), parameter :: An = [ 4.4979d0, 1.4182d0, & -20.877d0, 49.735d0, & -46.249d0, 17.442d0 ] !+ Fitting parameters from Table 2 in Ref. 2 real(Float64) :: ecoll, x, s ecoll = eb*1.d3 x = (ecoll)/deltaE if((ecoll.gt.10.2).and.(ecoll.le.11.56)) then sigma = 1.d-16 * (a + b*(ecoll - deltaE)) return endif if((ecoll.ge.11.56).and.(ecoll.le.12.23)) then sigma = 1.d-16 * c return endif if(ecoll.ge.12.23) then s = An(2) + An(3)/x + An(4)/x**2.0 + An(5)/x**3.0 + An(6)/x**4.0 sigma = 1.d-16 * sigma0/(deltaE*x) * (An(1)*log(x) + s) return endif if(x.le.1.0) then sigma = 0.0 return endif end function e_excit_1_2_janev function e_excit_1_3_janev(eb) result(sigma) !+Calculates cross section for a electron-Hydrogen impact excitation transition from !+the \(n=1\) state to the \(m=3\) state at energy `eb` !+ !+###Equation !+$$ e + H(1) \rightarrow e + H(3) $$ !+ !+###References !+* Eq. 5 and Table 2 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: sigma0 = 5.984d0 real(Float64), parameter :: deltaE = 12.09d0 !+ Fitting parameter from Table 2 in Ref. 2 real(Float64), parameter :: alpha = 0.38277d0 !+ Fitting parameter from Table 2 in Ref. 2 real(Float64), dimension(5), parameter :: A = [ 0.75448d0, 0.42956d0, & -0.58288d0, 1.0693d0, & 0.d0 ] !+ Fitting parameters from Table 2 in Ref. 2 real(Float64) :: ecoll, x, s ecoll = eb*1.d3 x=ecoll/deltaE s = A(2) + A(3)/x + A(4)/x**2.0 + A(5)/x**3.0 sigma = 1.d-16 * sigma0/(deltaE*x) * (1.0 - 1.0/x)**alpha * (A(1)*log(x) + s) if(x.le.1.0) sigma = 0.d0 end function e_excit_1_3_janev function e_excit_1_4_janev(eb) result(sigma) !+Calculates cross section for a electron-Hydrogen impact excitation transition from !+the \(n=1\) state to the \(m=4\) state at energy `eb` !+ !+###Equation !+$$ e + H(1) \rightarrow e + H(4) $$ !+ !+###References !+* Eq. 5 and Table 2 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: sigma0 = 5.984d0 real(Float64), parameter :: deltaE = 12.75d0 !+ Fitting parameter from Table 2 in Ref. 2 real(Float64), parameter :: alpha = 0.41844d0 !+ Fitting parameter from Table 2 in Ref. 2 real(Float64), dimension(5), parameter :: A = [ 0.24300d0, 0.24846d0, & 0.19701d0, 0.d0, & 0.d0 ] !+ Fitting parameters from Table 2 in Ref. 2 real(Float64) :: ecoll, x, s ecoll = eb*1.d3 x=ecoll/deltaE s = A(2) + A(3)/x + A(4)/x**2.0 + A(5)/x**3.0 sigma = 1.d-16 * sigma0/(deltaE*x) * (1.0 - 1.0/x)**alpha * (A(1)*log(x) + s) if(x.le.1.0) sigma = 0.d0 end function e_excit_1_4_janev function e_excit_1_5_janev(eb) result(sigma) !+Calculates cross section for a electron-Hydrogen impact excitation transition from !+the \(n=1\) state to the \(m=5\) state at energy `eb` !+ !+###Equation !+$$ e + H(1) \rightarrow e + H(5) $$ !+ !+###References !+* Eq. 5 and Table 2 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: sigma0 = 5.984d0 real(Float64), parameter :: deltaE = 13.06d0 !+ Fitting parameter from Table 2 in Ref. 2 real(Float64), parameter :: alpha = 0.45929d0 !+ Fitting parameter from Table 2 in Ref. 2 real(Float64), dimension(5), parameter :: A = [ 0.11508d0, 0.13092d0, & 0.23581d0, 0.d0, & 0.d0 ] !+ Fitting parameters from Table 2 in Ref. 2 real(Float64) :: ecoll, x, s ecoll = eb*1.d3 x=ecoll/deltaE s = A(2) + A(3)/x + A(4)/x**2.0 + A(5)/x**3.0 sigma = 1.d-16 * sigma0/(deltaE*x) * (1.0 - 1.0/x)**alpha * (A(1)*log(x) + s) if(x.le.1.0) sigma = 0.d0 end function e_excit_1_5_janev function e_excit_f(n, m) result(fnm) !+ Oscillator strength for a `n`\(\rightarrow\)`m` transition due to electron-Hydrogen impact excitation !+ !+###References !+* Eqs. 11-13 in Ref. 2 [[atomic_tables(module)]] integer, intent(in) :: n !+ Initial atomic energy level/state integer, intent(in) :: m !+ Final atomic energy level/state real(Float64) :: fnm !+ Oscillator strength real(Float64), dimension(3) :: g real(Float64) :: x, nf, mf, gs nf = real(n) mf = real(m) x = 1.0 - (nf/mf)**2.0 select case (n) case (1) g = [1.133,-0.4059,0.0714] case (2) g = [1.0785,-0.2319,0.02947] case DEFAULT g(1) = 0.9935 + 0.2328/nf - 0.1296/nf**2 g(2) =-1.0/nf * (0.6282 - 0.5598/nf + 0.5299/nf**2) g(3) = 1.0/nf**2.0 * (0.3887 - 1.1810/nf + 1.4700/nf**2) end select gs = g(1) + g(2)/x + g(3)/x**2 fnm = 32.0/(3.0*sqrt(3.0)*PI) * nf/mf**3 * 1/x**3 * gs end function e_excit_f function e_excit_1_janev(eb, m_max) result(sigma) !+Calculates an array of cross sections for a electron-Hydrogen impact excitation transition from !+the \(n=1\) state to the \(m=1..m_{max}\) state at energy `eb` !+ !+###Equation !+$$ e + H(1) \rightarrow e + H(m=1..m_{max}) $$ !+ !+###References !+* Eq. 5 and Table 2 in Ref. 2 [[atomic_tables(module)]] !+* Eqs. 6-7 in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: m_max !+ Number of m states to calculate real(Float64), dimension(m_max) :: sigma !+ Array of cross sections where the m'th index refers to !+an excitation from the \(n=1\) state to the m'th state [\(cm^2\)] integer :: m real(Float64) :: x, y, A, B, deltaE do m=1,m_max select case (m) case (1) sigma(1) = 0.d0 case (2) sigma(2) = e_excit_1_2_janev(eb) case (3) sigma(3) = e_excit_1_3_janev(eb) case (4) sigma(4) = e_excit_1_4_janev(eb) case (5) sigma(5) = e_excit_1_5_janev(eb) case DEFAULT y = 1.0 - (1.d0/m)**2.0 deltaE = 13.6*y x = (eb*1.d3)/deltaE A = 2.0 * e_excit_f(1,m)/y B = 4.0/(m**3.0 * y)*(1.0 + 4.0/(3.0*y) - 0.603/y**2.0) sigma(m) = 1.76e-16/(y*x)*(1.0 - exp(-0.45*y*x))* & (A*(log(x) + 1.0/(2.0*x)) + (B - A*log(2.0/y))* & (1.0 - 1.0/x)) if(x.le.1.0) sigma(m) = 0.d0 end select enddo end function e_excit_1_janev function e_excit_2_3_janev(eb) result(sigma) !+Calculates cross section for a electron-Hydrogen impact excitation transition from !+the \(n=2\) state to the \(m=3\) state at energy `eb` !+ !+###Equation !+$$ e + H(2) \rightarrow e + H(3) $$ !+ !+###References !+* Eq. 5 in Ref. 2 [[atomic_tables(module)]] !+* Section 2.1.1 B in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: sigma0 = 5.984d0 real(Float64), parameter :: deltaE = 1.8888d0 !+ Energy difference between \(n=1\) and \(n=3\): !+ \(\Delta E = 13.6\left (\frac{1}{2^2} - \frac{1}{3^2}\right )\) real(Float64), parameter :: alpha = 1.3196d0 !+ Fitting parameter from Section 2.1.1 B in Ref. 2 real(Float64), dimension(5), parameter :: A = [ 38.906d0, 5.2373d0, 119.25d0, & -595.39d0, 816.71d0] !+ Fitting parameters from Section 2.1.1 B in Ref. 2 real(Float64) :: ecoll, x, s ecoll = eb*1.d3 x = ecoll/deltaE s = A(2) + A(3)/x + A(4)/x**2.0 + A(5)/x**3.0 sigma = 1.d-16 * sigma0/(deltaE*x) * (1.0 - 1.0/x)**alpha * (A(1)*log(x) + s) if(x.le.1.0) sigma = 0.d0 end function e_excit_2_3_janev function e_excit_n(eb, n, m_max) result(sigma) !+Calculates an array of cross sections for a electron-Hydrogen impact excitation transition from !+the `n` state to the \(m=1..m_{max}\) state at energy `eb` !+ !+###Equation !+$$ e + H(n) \rightarrow e + H(m=1..m_{max}), m \gt n $$ !+ !+###References !+* Eq. 5 and Table 2 in Ref. 2 [[atomic_tables(module)]] !+* Eqs. 6-7 in Ref. 2 [[atomic_tables(module)]] !+* Section 2.1.1 B in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: n !+ Initial atomic energy level/state integer, intent(in) :: m_max !+ Number of m states to calculate real(Float64), dimension(m_max) :: sigma !+ Array of cross sections where the m'th index refers to !+an excitation from the `n`\(\rightarrow\)`m` state [\(cm^2\)] integer :: m real(Float64) :: nf, mf real(Float64) :: x, y, A, B, bn, r, deltaE nf = real(n) if(n.eq.1) then sigma = e_excit_1_janev(eb, m_max) else m_loop: do m=1,m_max mf = real(m) if(n.ge.m) then sigma(m) = 0.d0 cycle m_loop endif if((n.eq.2).and.(m.eq.3)) then sigma(m) = e_excit_2_3_janev(eb) else deltaE=13.6*(1.0/nf**2 - 1.0/mf**2) x = (eb*1.d3)/deltaE y = 1.0 - (nf/mf)**2 r = 1.94/nf**1.57 A = 2.0 * nf**2 * e_excit_f(n,m)/y bn = 1.0/nf*(4.0 - 18.63/nf + 36.24/nf**2 - 28.09/nf**3) B = 4.0 * nf**4/(mf**3*y**2)*(1.0 + 4.0/(3.0*y) + bn/y**2.0) sigma(m) = 1.76e-16*nf**2/(y*x)*(1.0 - exp(-r*y*x))* & (A*(log(x) + 1.0/(2.0*x)) + (B - A*log(2.0*n**2.0/y))* & (1.0 - 1.0/x)) if(x.le.1.0) sigma(m) = 0.d0 endif enddo m_loop endif end function e_excit_n function e_excit_n_m(eb, n, m) result(sigma) !+Calculates an array of cross sections for a electron-Hydrogen impact excitation transition from !+the `n` \(\rightarrow\) `m` state at energy `eb` !+ !+###Equation !+$$ e + H(n) \rightarrow e + H(m), m \gt n $$ !+ !+###References !+* Eq. 5 and Table 2 in Ref. 2 [[atomic_tables(module)]] !+* Eqs. 6-7 in Ref. 2 [[atomic_tables(module)]] !+* Section 2.1.1 B in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: n !+ Initial atomic energy level/state integer, intent(in) :: m !+ Final atomic energy level/state real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(12) :: sigma_m sigma_m = e_excit_n(eb, n, 12) if(m.le.0) then sigma = sum(sigma_m) else sigma = sigma_m(m) endif end function e_excit_n_m function e_excit(eb, n_max, m_max) result(sigma) !+Calculates a matrix of cross section for a proton-Hydrogen impact excitation transition !+from the \(n=1..n_{max} \rightarrow m=1..m_{max}\) states at energy `eb` !+ !+###Equation !+$$ e + H(n=1..n_{max}) \rightarrow e + H(m=1..m_{max}), m \gt n $$ !+ !+###References !+* Eq. 5 and Table 2 in Ref. 2 [[atomic_tables(module)]] !+* Eqs. 6-7 in Ref. 2 [[atomic_tables(module)]] !+* Section 2.1.1 B in Ref. 2 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] integer, intent(in) :: m_max !+ Number of initial atomic energy levels/states integer, intent(in) :: n_max !+ Number of final atomic energy levels/states real(Float64), dimension(n_max,m_max) :: sigma !+ Matrix of cross sections where the subscripts correspond !+ to the \(n \rightarrow m\) transitions: e_excit[n,m] [\(cm^2\)] real(Float64), dimension(12,12) :: sigma_full integer :: n do n=1,12 sigma_full(n,:) = e_excit_n(eb, n, 12) enddo sigma = sigma_full(1:n_max,1:m_max) end function e_excit !Impurities !A[q]_cx_[n]_[source] function B5_cx_1_adas(eb) result(sigma) !+ Calculates the total charge exchange cross section for a Neutral Hydrogen atom !+in the \(n=1\) state colliding with a fully stripped Boron ion at energy `eb` !+ !+###Equation !+$$ B^{5+} + H(1) \rightarrow B^{4+} + H^+ $$ !+ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(7), parameter :: A = [ 1.174052518d3, -1.793561728d3, & 1.117522436d3, -3.679435571d2, & 6.750816878d1, -6.542029074d0, & 2.614113716d-1 ] real(Float64) :: e, l, p e = max(eb,1.0)*1.d3 !set lower limit to be 1keV l = log10(e) if(e.le.4.d5) then p = A(1) + A(2)*l + A(3)*l**2 + A(4)*l**3 + & A(5)*l**4 + A(6)*l**5 + A(7)*l**6 sigma = 10.d0**p else sigma = 0.d0 endif end function B5_cx_1_adas function B5_cx_2_adas(eb) result(sigma) !+ Calculates the total charge exchange cross section for a Neutral Hydrogen atom !+in the \(n=2\) state colliding with a fully stripped Boron ion at energy `eb` !+ !+###Equation !+$$ B^{5+} + H(2) \rightarrow B^{4+} + H^+ $$ !+ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(10), parameter :: A = [6.603246818d1, -3.072575676d2, & 5.030801019d2, -4.585636345d2, & 2.568666393d2, -9.185150382d1, & 2.100012584d1, -2.964174788d0, & 2.346396110d-1, -7.943766873d-3] real(Float64) :: e, l, p e = max(eb*1.d3,10.0) l = log10(e) if(e.le.1.d5) then p = A(1) + A(2)*l + A(3)*l**2 + A(4)*l**3 + & A(5)*l**4 + A(6)*l**5 + A(7)*l**6 + & A(8)*l**7 + A(9)*l**8 + A(10)*l**9 sigma = 10.d0**p else sigma = 0.d0 endif end function B5_cx_2_adas function C6_cx_1_adas(eb) result(sigma) !+ Calculates the total charge exchange cross section for a Neutral Hydrogen atom !+in the \(n=1\) state colliding with a fully stripped Carbon ion at energy `eb` !+ !+###Equation !+$$ C^{6+} + H(1) \rightarrow C^{5+} + H^+ $$ !+ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(7), parameter :: A = [2.007882674d2, -3.546893286d2, & 2.381542403d2, -8.355431742d1, & 1.617519888d1, -1.638152470d0, & 6.768953863d-2 ] real(Float64) :: e, l, p e = max(eb*1.d3,1.5d3) l = log10(e) p = A(1) + A(2)*l + A(3)*l**2 + A(4)*l**3 + & A(5)*l**4 + A(6)*l**5 + A(7)*l**6 sigma = 10.d0**p end function C6_cx_1_adas function C6_cx_2_adas(eb) result(sigma) !+ Calculates the total charge exchange cross section for a Neutral Hydrogen atom !+in the \(n=2\) state colliding with a fully stripped Carbon ion at energy `eb` !+ !+###Equation !+$$ C^{6+} + H(2) \rightarrow C^{5+} + H^+ $$ !+ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(11), parameter :: A = [9.151879441d5, -2.134573133d6, & 2.223792624d6, -1.362648703d6, & 5.438401343d5, -1.477110500d5, & 2.764972254d4, -3.522105245d3, & 2.921934171d2, -1.425552507d1, & 3.106007048d-1 ] real(Float64) :: e, l, p e = max(eb*1.d3,1.5d3)*2.0**2 l = log10(e) p = A(1) + A(2)*l + A(3)*l**2 + A(4)*l**3 + & A(5)*l**4 + A(6)*l**5 + A(7)*l**6 + & A(8)*l**7 + A(9)*l**8 + A(10)*l**9 + A(11)*l**10 sigma = 10.d0**p end function C6_cx_2_adas function C6_cx_3_adas(eb) result(sigma) !+ Calculates the total charge exchange cross section for a Neutral Hydrogen atom !+in the \(n=3\) state colliding with a fully stripped Carbon ion at energy `eb` !+ !+###Equation !+$$ C^{6+} + H(3) \rightarrow C^{5+} + H^+ $$ !+ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(11), parameter :: A = [9.208877916d5, -2.147294379d6, & 2.236451628d6, -1.370042347d6, & 5.466461899d5, -1.484338816d5, & 2.777765778d4, -3.537459450d3, & 2.933884362d2, -1.430994136d1, & 3.117002878d-1 ] real(Float64) :: e, l, p e = max(eb*1.d3,1.5d3)*3.0**2 l = log10(e) p = A(1) + A(2)*l + A(3)*l**2 + A(4)*l**3 + & A(5)*l**4 + A(6)*l**5 + A(7)*l**6 + & A(8)*l**7 + A(9)*l**8 + A(10)*l**9 + A(11)*l**10 sigma = 10.d0**p end function C6_cx_3_adas function Aq_cx_n_adas(eb, q, n) result(sigma) !+ Calculates the total charge exchange cross section for a Neutral Hydrogen atom !+in the `n` state colliding with a ion with charge `q` at energy `eb` !+ !+@note Returns 0 if ADAS cross sections are not available for given inputs !+ !+###Equation !+$$ A^{q+} + H(n) \rightarrow A^{(q-1)+} + H^+ $$ !+ !+###References !+* Ref. 4 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] integer, intent(in) :: q !+ Ion charge integer, intent(in) :: n !+ Initial atomic energy level/state real(Float64) :: sigma !+ Cross Section [\(cm^2\)] sigma = 0.d0 select case (q) case (5) if(n.eq.1) sigma = B5_cx_1_adas(eb) if(n.eq.2) sigma = B5_cx_2_adas(eb) case (6) if(n.eq.1) sigma = C6_cx_1_adas(eb) if(n.eq.2) sigma = C6_cx_2_adas(eb) if(n.eq.3) sigma = C6_cx_3_adas(eb) case DEFAULT sigma = 0.d0 end select end function Aq_cx_n_adas function B5_cx_1_janev(eb) result(sigma) !+ Calculates the total charge exchange cross section for a Neutral Hydrogen atom !+in the \(n=1\) state colliding with a fully stripped Boron ion at energy `eb` !+ !+###Equation !+$$ B^{5+} + H(1) \rightarrow B^{4+} + H^+ $$ !+ !+###References !+* Page 166 in Ref. 5 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(11), parameter :: A = [31.226d0, 1.1442d0, & 4.8372d-8, 3.0961d-10, & 4.7205d0, 6.2844d-7, & 3.1297d0, 0.12556d0, & 0.30098d0, 5.9607d-2, & -0.57923d0 ] sigma = 1.d-16*A(1)*(exp(-A(2)/eb**A(8)) / & (1.0 + A(3)*eb**2 + A(4)*eb**A(5) + & A(6)*eb**A(7)) + A(9)*exp(-A(10)*eb) /eb**A(11)) end function B5_cx_1_janev function C6_cx_1_janev(eb) result(sigma) !+ Calculates the total charge exchange cross section for a Neutral Hydrogen atom !+in the \(n=1\) state colliding with a fully stripped Carbon ion at energy `eb` !+ !+###Equation !+$$ C^{6+} + H(1) \rightarrow C^{5+} + H^+ $$ !+ !+###References !+* Page 168 in Ref. 5 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(11), parameter :: A = [418.18d0, 2.1585d0, & 3.4808d-4, 5.3333d-9, & 4.6556d0, 0.33755d0, & 0.81736d0, 0.27874d0, & 1.8003d-6, 7.1033d-2, & 0.53261d0 ] sigma = 1.d-16*A(1)*(exp(-A(2)/eb**A(8)) / & (1.0 + A(3)*eb**2 + A(4)*eb**A(5) + & A(6)*eb**A(7)) + A(9)*exp(-A(10)*eb) /eb**A(11)) end function C6_cx_1_janev function Aq_cx_n_janev(eb, q, n) result(sigma) !+ Calculates the total charge exchange cross section for a Neutral Hydrogen atom !+in the `n` state colliding with a ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(n) \rightarrow A^{(q-1)+} + H^+, q \gt 3 $$ !+ !+###References !+* Page 166 in Ref. 5 [[atomic_tables(module)]] !+* Page 168 in Ref. 5 [[atomic_tables(module)]] !+* Page 174 in Ref. 5 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] integer, intent(in) :: q !+ Ion charge integer, intent(in) :: n !+ Initial atomic energy level/state real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 1.507d5 real(Float64), parameter :: B = 1.974d-5 real(Float64) :: etil, nf, qf nf = real(n) qf = real(q) if((n.eq.1).and.(q.eq.5)) then sigma = B5_cx_1_janev(eb) return endif if((n.eq.1).and.(q.eq.6)) then sigma = C6_cx_1_janev(eb) return endif if(n.le.1) then sigma = 0.d0 return endif etil = eb*(nf**2.0)/(qf**0.5) sigma = qf*nf**4 * 7.04d-16 * A/(etil**3.5 * (1.0 + B*etil**2)) * & (1.0 - exp(-2.0*etil**3.5 * (1.0 + B*etil**2)/(3.0*A))) end function Aq_cx_n_janev function Aq_cx_n(eb, q, n) result(sigma) !+ Calculates the total charge exchange cross section for a Neutral Hydrogen atom !+in the `n` state colliding with a ion with charge `q` at energy `eb` !+ !+@note Uses ADAS(Ref. 4) cross sections if available else uses Janev (Ref. 5) cross sections !+ !+###Equation !+$$ A^{q+} + H(n) \rightarrow A^{(q-1)+} + H^+, q \gt 3 $$ !+ !+###References !+* Ref. 4 [[atomic_tables(module)]] !+* Page 166 in Ref. 5 [[atomic_tables(module)]] !+* Page 168 in Ref. 5 [[atomic_tables(module)]] !+* Page 174 in Ref. 5 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] integer, intent(in) :: q !+ Ion charge integer, intent(in) :: n !+ Initial atomic energy level/state real(Float64) :: sigma !+ Cross Section [\(cm^2\)] sigma = Aq_cx_n_adas(eb, q, n) if(sigma.eq.0.d0) then sigma = Aq_cx_n_janev(eb, q, n) endif end function Aq_cx_n function Aq_cx(eb, q, n_max) result(sigma) !+ Calculates an array of total charge exchange cross sections for a Neutral Hydrogen atom !+in the n=1...n_max states colliding with a ion with charge `q` at energy `eb` !+ !+@note Uses ADAS(Ref. 4) cross sections if available else uses Janev (Ref. 5) cross sections !+ !+###Equation !+$$ A^{q+} + H(n=1..n_{max}) \rightarrow A^{(q-1)+} + H^+, q \gt 3 $$ !+ !+###References !+* Ref. 4 [[atomic_tables(module)]] !+* Page 174 in Ref. 5 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] integer, intent(in) :: q !+ Ion charge integer, intent(in) :: n_max !+ Number of initial atomic energy levels/states real(Float64), dimension(n_max) :: sigma !+ Array of cross sections where the n'th index refers to a charge exchange from the n'th state [\(cm^2\)] integer :: n do n=1,n_max sigma(n) = Aq_cx_n(eb, q, n) enddo end function Aq_cx !Impurity impact ionization function B5_ioniz_1_janev(eb) result(sigma) !+ Calculates the total ionization cross section for a Neutral Hydrogen atom !+in the \(n=1\) state colliding with a fully stripped Boron ion at energy `eb` !+ !+###Equation !+$$ B^{5+} + H(1) \rightarrow B^{5+} + H^+ + e $$ !+ !+###References !+* Page 152 in Ref. 5 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(8), parameter :: A = [351.52d0, 233.63d0, & 3.2952d3, 5.3787d-6, & 1.8834d-2, -2.2064d0, & 7.2074d0, -3.78664d0 ] sigma = 1.d-16*A(1)*(exp(-A(2)/eb)*log(1 + A(3)*eb)/eb & + A(4)*exp(-A(5)*eb)/((eb**A(6)) + A(7)*(eb**A(8)))) end function B5_ioniz_1_janev function C6_ioniz_1_janev(eb) result(sigma) !+ Calculates the total ionization cross section for a Neutral Hydrogen atom !+in the \(n=1\) state colliding with a fully stripped Carbon ion at energy `eb` !+ !+###Equation !+$$ C^{6+} + H(1) \rightarrow C^{6+} + H^+ + e $$ !+ !+###References !+* Page 154 in Ref. 5 [[atomic_tables(module)]] real(Float64), intent(in) :: eb real(Float64) :: sigma real(Float64), dimension(8), parameter :: A = [ 438.36d0, 327.10d0, & 1.4444d5, 3.5212d-3, & 8.3031d-3, -0.63731d0, & 1.9116d4, -3.1003d0 ] sigma = 1.d-16*A(1)*(exp(-A(2)/eb)*log(1 + A(3)*eb)/eb & + A(4)*exp(-A(5)*eb)/((eb**A(6)) + A(7)*(eb**A(8)))) end function C6_ioniz_1_janev function Aq_ioniz_n_janev(eb, q, n) result(sigma) !+ Calculates the generic total ionization cross section for a Neutral Hydrogen atom !+in the `n` state colliding with a ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(n) \rightarrow A^{q+} + H^+ + e, n \gt 1, q \gt 3 $$ !+ !+###References !+* Page 160 in Ref. 5 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] integer, intent(in) :: q !+ Ion charge integer, intent(in) :: n !+ Initial atomic energy level/state real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: M = 0.283d0 real(Float64), parameter :: B = 4.04d0 real(Float64), parameter :: c = 137.d0 real(Float64), parameter :: g = 0.662d0 real(Float64), parameter :: lambda = 0.76d0 real(Float64) :: nf, qf, u, v, sigma_b nf = real(n) qf = real(q) v = sqrt(eb/25.) u = nf*v sigma_b = 3.52d-16 * (nf**4) * (qf**2)/(u**2) * & (M * (log((u**2)/(c**2 - u**2)) - (u**2)/(c**2)) + B - g/u**2) sigma_b = max(sigma_b,0.d0) sigma = exp(-lambda*qf/u**2)*sigma_b end function Aq_ioniz_n_janev function Aq_ioniz_n(eb, q, n) result(sigma) !+ Calculates the total ionization cross section for a Neutral Hydrogen atom !+in the `n` state colliding with a ion with charge `q` at energy `eb` !+ !+@note Uses specialized cross sections if available else uses generic cross sections !+ !+###Equation !+$$ A^{q+} + H(n) \rightarrow A^{(q-1)+} + H^+, q \gt 3 $$ !+ !+###References !+* Page 152 in Ref. 5 [[atomic_tables(module)]] !+* Page 154 in Ref. 5 [[atomic_tables(module)]] !+* Page 160 in Ref. 5 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] integer, intent(in) :: q !+ Ion charge integer, intent(in) :: n !+ Initial atomic energy level/state real(Float64) :: sigma !+ Cross Section [\(cm^2\)] if((q.eq.5).and.(n.eq.1)) then sigma = B5_ioniz_1_janev(eb) return endif if((q.eq.6).and.(n.eq.1)) then sigma = C6_ioniz_1_janev(eb) return endif sigma = Aq_ioniz_n_janev(eb, q, n) end function Aq_ioniz_n function Aq_ioniz(eb, q, n_max) result(sigma) !+ Calculates an array of total ionization cross sections for a Neutral Hydrogen atom !+in the n=1...n_max states colliding with a ion with charge `q` at energy `eb` !+ !+@note Uses specialized cross sections if available else uses generic cross sections !+ !+###Equation !+$$ A^{q+} + H(n=1..n_{max}) \rightarrow A^{(q-1)+} + H^+, q \gt 3 $$ !+ !+###References !+* Page 152 in Ref. 5 [[atomic_tables(module)]] !+* Page 154 in Ref. 5 [[atomic_tables(module)]] !+* Page 160 in Ref. 5 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Relative collision energy [keV/amu] integer, intent(in) :: q !+ Ion charge integer, intent(in) :: n_max !+ Number of initial states n to calculate real(Float64), dimension(n_max) :: sigma !+ Array of cross sections where the n'th index refers to a ionization from the n'th state [\(cm^2\)] integer :: n do n=1,n_max sigma(n) = Aq_ioniz_n(eb, q, n) enddo end function Aq_ioniz !Impurity impact excitation function Aq_excit_1_2_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=1\) state to the \(m=2\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(1) \rightarrow A^{q+} + H(2), q \gt 4 $$ !+ !+###References !+* Page 132 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: A = [38.738d0, 37.033d0, & 0.39862d0, 7.7582d-5, & 0.25402d0, -2.7418d0 ] real(Float64) :: Etil, xsi, qf qf = real(q) etil = eb/qf xsi = 2.**(0.5238*(1 - sqrt(2.0/qf))) sigma = qf*1.d-16*xsi*A(1)*(exp(-A(2)/etil)*log(1 + A(3)*etil)/etil & + A(4)*exp(-A(5)*etil)/etil**A(6)) end function Aq_excit_1_2_janev function Aq_excit_1_3_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=1\) state to the \(m=3\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(1) \rightarrow A^{q+} + H(3), q \gt 4 $$ !+ !+###References !+* Page 134 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: A = [4.3619d0, 57.451d0, & 21.001d0, 2.3292d-4, & 0.083130d0, -2.2364d0 ] real(Float64) :: Etil, xsi, qf qf = real(q) etil = eb/qf xsi = 2.**(0.5238*(1 - sqrt(2.0/qf))) sigma = qf*1.d-16*xsi*A(1)*(exp(-A(2)/etil)*log(1 + A(3)*etil)/etil & + A(4)*exp(-A(5)*etil)/etil**A(6)) end function Aq_excit_1_3_janev function Aq_excit_1_4_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=1\) state to the \(m=4\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(1) \rightarrow A^{q+} + H(4), q \gt 4 $$ !+ !+###References !+* Page 134 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: A = [1.3730d0, 60.710d0, & 31.797d0, 2.0207d-4, & 0.082513d0, -2.3055d0 ] real(Float64) :: Etil, xsi, qf qf = real(q) etil = eb/qf xsi = 2.**(0.5238*(1 - sqrt(2.0/qf))) sigma = qf*1.d-16*xsi*A(1)*(exp(-A(2)/etil)*log(1 + A(3)*etil)/etil & + A(4)*exp(-A(5)*etil)/etil**A(6)) end function Aq_excit_1_4_janev function Aq_excit_1_5_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=1\) state to the \(m=5\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(1) \rightarrow A^{q+} + H(5), q \gt 4 $$ !+ !+###References !+* Page 136 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: A = [0.56565d0, 67.333d0, & 55.290d0, 2.1595d-4, & 0.081624d0, -2.1971d0 ] real(Float64) :: Etil, xsi, qf qf = real(q) etil = eb/qf xsi = 2.**(0.5238*(1 - sqrt(2.0/qf))) sigma = qf*1.d-16*xsi*A(1)*(exp(-A(2)/etil)*log(1 + A(3)*etil)/etil & + A(4)*exp(-A(5)*etil)/etil**A(6)) end function Aq_excit_1_5_janev function Aq_excit_1_janev(eb, q, m_max) result(sigma) !+Calculates an array of the excitation cross sections for a neutral Hydrogen atom transitioning from !+the \(n=1\) state to the m=1..`m_max` states due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(1) \rightarrow A^{q+} + H(m=1..m_{max}), q \gt 4 $$ !+ !+###References !+* Page 132 in Ref. 5 [[atomic_tables(module)]] !+* Page 134 in Ref. 5 [[atomic_tables(module)]] !+* Page 136 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge integer, intent(in) :: m_max !+ Number of m states to calculate real(Float64), dimension(m_max) :: sigma !+ Array of cross sections where the m'th index refers to !+an excitation from the \(n=1\) state to the m'th state [\(cm^2\)] integer :: m sigma = 0.d0 do m=1,m_max select case (m) case (1) sigma(1) = 0.d0 case (2) sigma(2) = Aq_excit_1_2_janev(eb, q) case (3) sigma(3) = Aq_excit_1_3_janev(eb, q) case (4) sigma(4) = Aq_excit_1_4_janev(eb, q) case (5) sigma(5) = Aq_excit_1_5_janev(eb, q) case DEFAULT sigma(m) = sigma(5)*(5.0/m)**3.0 end select enddo end function Aq_excit_1_janev function Aq_excit_2_3_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=2\) state to the \(m=3\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(2) \rightarrow A^{q+} + H(3), q \gt 3 $$ !+ !+###References !+* Page 138 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: A = [358.03d0, 25.283d0, & 1.4726d0, 0.014398d0, & 0.12207d0, -0.86210d0 ] real(Float64) :: etil, qf, xsi qf = real(q) etil = eb/qf xsi = 2.0**(0.5238*(1 - sqrt(2.0/qf))) sigma = qf*1.e-16*xsi*A(1)*(exp(-A(2)/etil)*log(1 + A(3)*etil)/etil & + A(4)*exp(-A(5)*etil)/etil**A(6)) end function Aq_excit_2_3_janev function Aq_excit_2_4_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=2\) state to the \(m=4\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(2) \rightarrow A^{q+} + H(4), q \gt 3 $$ !+ !+###References !+* Page 138 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: A = [50.744d0, 19.416d0, & 4.0262d0, 0.014398d0, & 0.31584d0, -1.4799d0 ] real(Float64) :: etil, qf, xsi qf = real(q) etil = eb/qf xsi = 2.0**(0.5238*(1 - sqrt(2.0/qf))) sigma = qf*1.e-16*xsi*A(1)*(exp(-A(2)/etil)*log(1 + A(3)*etil)/etil & + A(4)*exp(-A(5)*etil)/etil**A(6)) end function Aq_excit_2_4_janev function Aq_excit_2_5_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=2\) state to the \(m=5\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(2) \rightarrow A^{q+} + H(5), q \gt 3 $$ !+ !+###References !+* Page 138 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: A = [18.264d0, 18.973d0, & 2.9056d0, 0.013701d0, & 0.31711d0, -1.4775d0 ] real(Float64) :: etil, qf, xsi qf = real(q) etil = eb/qf xsi = 2.0**(0.5238*(1 - sqrt(2.0/qf))) sigma = qf*1.e-16*xsi*A(1)*(exp(-A(2)/etil)*log(1 + A(3)*etil)/etil & + A(4)*exp(-A(5)*etil)/etil**A(6)) end function Aq_excit_2_5_janev function Aq_excit_2_6_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=2\) state to the \(m=6\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(2) \rightarrow A^{q+} + H(6), q \gt 3 $$ !+ !+###References !+* Page 140 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 0.4610d0 real(Float64) :: hi hi = 2.0**(0.397*(1.0 - sqrt(2.0/q))) sigma = A*hi*Aq_excit_2_5_janev(eb, q) end function Aq_excit_2_6_janev function Aq_excit_2_7_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=2\) state to the \(m=7\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(2) \rightarrow A^{q+} + H(7), q \gt 3 $$ !+ !+###References !+* Page 140 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 0.2475d0 real(Float64) :: hi hi = 2.0**(0.397*(1.0 - sqrt(2.0/q))) sigma = A*hi*Aq_excit_2_5_janev(eb, q) end function Aq_excit_2_7_janev function Aq_excit_2_8_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=2\) state to the \(m=8\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(2) \rightarrow A^{q+} + H(8), q \gt 3 $$ !+ !+###References !+* Page 140 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 0.1465d0 real(Float64) :: hi hi = 2.0**(0.397*(1.0 - sqrt(2.0/q))) sigma = A*hi*Aq_excit_2_5_janev(eb, q) end function Aq_excit_2_8_janev function Aq_excit_2_9_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=2\) state to the \(m=9\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(2) \rightarrow A^{q+} + H(9), q \gt 3 $$ !+ !+###References !+* Page 140 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 0.092d0 real(Float64) :: hi hi = 2.0**(0.397*(1.0 - sqrt(2.0/q))) sigma = A*hi*Aq_excit_2_5_janev(eb, q) end function Aq_excit_2_9_janev function Aq_excit_2_10_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=2\) state to the \(m=10\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(2) \rightarrow A^{q+} + H(10), q \gt 3 $$ !+ !+###References !+* Page 140 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 0.0605d0 real(Float64) :: hi hi = 2.0**(0.397*(1.0 - sqrt(2.0/q))) sigma = A*hi*Aq_excit_2_5_janev(eb, q) end function Aq_excit_2_10_janev function Aq_excit_2_janev(eb, q, m_max) result(sigma) !+Calculates an array of the excitation cross sections for a neutral Hydrogen atom transitioning from !+the \(n=2\) state to the m=1..`m_max` states due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(2) \rightarrow A^{q+} + H(m=1..m_{max}), q \gt 4, m \gt n $$ !+ !+###References !+* Page 138 in Ref. 5 [[atomic_tables(module)]] !+* Page 140 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge integer, intent(in) :: m_max !+ Number of m states to calculate real(Float64), dimension(m_max) :: sigma !+ Array of cross sections where the m'th index refers to !+an excitation from the \(n=2\) state to the m'th state [\(cm^2\)] integer :: m sigma = 0.d0 do m=1,m_max select case (m) case (1) sigma(1) = 0.d0 case (2) sigma(2) = 0.d0 case (3) sigma(3) = Aq_excit_2_3_janev(eb, q) case (4) sigma(4) = Aq_excit_2_4_janev(eb, q) case (5) sigma(5) = Aq_excit_2_5_janev(eb, q) case (6) sigma(6) = Aq_excit_2_6_janev(eb, q) case (7) sigma(7) = Aq_excit_2_7_janev(eb, q) case (8) sigma(8) = Aq_excit_2_8_janev(eb, q) case (9) sigma(9) = Aq_excit_2_9_janev(eb, q) case (10) sigma(10) = Aq_excit_2_10_janev(eb, q) case DEFAULT sigma(m) = sigma(10)*(10.0/m)**3.0 end select enddo end function Aq_excit_2_janev function Aq_excit_3_4_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=3\) state to the \(m=4\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(3) \rightarrow A^{q+} + H(4), q \gt 3 $$ !+ !+###References !+* Page 142 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: A = [1247.5d0, 11.319d0, & 2.6235d0, 0.068781d0, & 0.521176d0, -1.2722d0 ] real(Float64) :: Etil, qf, xsi qf = real(q) etil = eb/qf xsi = 2.0**(0.397*(1 - sqrt(2.0/qf))) sigma = qf*1.e-16*xsi*A(1)*(exp(-A(2)/etil)*log(1+A(3)*etil)/etil & + A(4)*exp(-A(5)*etil)/etil**A(6)) end function Aq_excit_3_4_janev function Aq_excit_3_5_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=3\) state to the \(m=5\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(3) \rightarrow A^{q+} + H(5), q \gt 3 $$ !+ !+###References !+* Page 142 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: A = [190.59d0, 11.096d0, & 2.9098d0, 0.073307d0, & 0.54177d0, -1.2894d0 ] real(Float64) :: Etil, qf, xsi qf = real(q) etil = eb/qf xsi = 2.0**(0.397*(1 - sqrt(2.0/qf))) sigma = qf*1.e-16*xsi*A(1)*(exp(-A(2)/etil)*log(1+A(3)*etil)/etil & + A(4)*exp(-A(5)*etil)/etil**A(6)) end function Aq_excit_3_5_janev function Aq_excit_3_6_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=3\) state to the \(m=6\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(3) \rightarrow A^{q+} + H(6), q \gt 3 $$ !+ !+###References !+* Page 142 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(6), parameter :: A = [63.494d0, 11.507d0, & 4.3417d0, 0.077953d0, & 0.53461d0, -1.2881d0 ] real(Float64) :: Etil, qf, xsi qf = real(q) etil = eb/qf xsi = 2.0**(0.397*(1 - sqrt(2.0/qf))) sigma = qf*1.e-16*xsi*A(1)*(exp(-A(2)/etil)*log(1+A(3)*etil)/etil & + A(4)*exp(-A(5)*etil)/etil**A(6)) end function Aq_excit_3_6_janev function Aq_excit_3_7_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=3\) state to the \(m=7\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(3) \rightarrow A^{q+} + H(7), q \gt 3 $$ !+ !+###References !+* Page 144 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 0.4670d0 real(Float64) :: hi hi=2.0**(0.397*(1.0 - sqrt(2.0/q))) sigma=hi*A*Aq_excit_3_6_janev(eb, q) end function Aq_excit_3_7_janev function Aq_excit_3_8_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=3\) state to the \(m=8\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(3) \rightarrow A^{q+} + H(8), q \gt 3 $$ !+ !+###References !+* Page 144 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 0.2545d0 real(Float64) :: hi hi=2.0**(0.397*(1.0 - sqrt(2.0/q))) sigma=hi*A*Aq_excit_3_6_janev(eb, q) end function Aq_excit_3_8_janev function Aq_excit_3_9_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=3\) state to the \(m=9\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(3) \rightarrow A^{q+} + H(9), q \gt 3 $$ !+ !+###References !+* Page 144 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 0.1540d0 real(Float64) :: hi hi=2.0**(0.397*(1.0 - sqrt(2.0/q))) sigma=hi*A*Aq_excit_3_6_janev(eb, q) end function Aq_excit_3_9_janev function Aq_excit_3_10_janev(eb, q) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the \(n=3\) state to the \(m=10\) state due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(3) \rightarrow A^{q+} + H(10), q \gt 3 $$ !+ !+###References !+* Page 144 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), parameter :: A = 0.1d0 real(Float64) :: hi hi=2.0**(0.397*(1.0 - sqrt(2.0/q))) sigma=hi*A*Aq_excit_3_6_janev(eb, q) end function Aq_excit_3_10_janev function Aq_excit_3_janev(eb, q, m_max) result(sigma) !+Calculates an array of the excitation cross sections for a neutral Hydrogen atom transitioning from !+the \(n=3\) state to the m=1..`m_max` states due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(3) \rightarrow A^{q+} + H(m=1..m_{max}), q \gt 4, m \gt n $$ !+ !+###References !+* Page 142 in Ref. 5 [[atomic_tables(module)]] !+* Page 144 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge integer, intent(in) :: m_max !+ Number of m states to calculate real(Float64), dimension(m_max) :: sigma !+ Array of cross sections where the m'th index refers to !+an excitation from the \(n=3\) state to the m'th state [\(cm^2\)] integer :: m sigma = 0.d0 do m=1,m_max select case (m) case (1) sigma(1) = 0.d0 case (2) sigma(2) = 0.d0 case (3) sigma(3) = 0.d0 case (4) sigma(4) = Aq_excit_3_4_janev(eb, q) case (5) sigma(5) = Aq_excit_3_5_janev(eb, q) case (6) sigma(6) = Aq_excit_3_6_janev(eb, q) case (7) sigma(7) = Aq_excit_3_7_janev(eb, q) case (8) sigma(8) = Aq_excit_3_8_janev(eb, q) case (9) sigma(9) = Aq_excit_3_9_janev(eb, q) case (10) sigma(10) = Aq_excit_3_10_janev(eb, q) case DEFAULT sigma(m) = sigma(10)*(10.0/m)**3.0 end select enddo end function Aq_excit_3_janev function Aq_excit_n_janev(eb, q, n, m_max) result(sigma) !+Calculates an array of the generic excitation cross sections for a neutral Hydrogen atom transitioning from !+the `n` state to the m=1..`m_max` states due to a collision an ion with charge `q` at energy `eb` !+ !+###Equation !+$$ A^{q+} + H(n) \rightarrow A^{q+} + H(m=1..m_{max}), q \gt 3, m \gt n, n \gt 3 $$ !+ !+###References !+* Page 146 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge integer, intent(in) :: n !+ Initial atomic energy level/state integer, intent(in) :: m_max !+ Number of m states to calculate real(Float64), dimension(m_max) :: sigma !+ Array of cross sections where the m'th index refers to !+an excitation from the `n` state to the m'th state [\(cm^2\)] integer :: m real(Float64) :: nf, mf, qf, etil, hi, s real(Float64) :: D, A, G, L, F, H, y, zpl, zmi, C2pl, C2mi nf = real(n) qf = real(q) sigma = 0.d0 m_loop: do m=1,m_max mf = real(m) if(n.ge.m) then sigma(m) = 0.d0 cycle m_loop endif etil = eb/(25.0*qf) hi = 2.0**(0.322*(1.0 - sqrt(2.0/qf))) s = (mf - nf) D = exp(-1.0/(nf*mf*etil**2)) A = 8.0/(3.0*s) * (mf/(s*nf))**3 * (0.184 - 0.04/s**(2.0/3.0)) * & (1.0 - 0.2*s/(nf*mf))**(1.0 + 2.0*s) G = 0.5*(etil*nf**2.0 / (mf - 1.0/mf))**3.0 L = log(1.0 + 0.53*etil**2.0 * nf*(mf - 2.0/mf )/(1.0 + 0.4*etil)) F = (1.0 - 0.3*s*D/(nf*mf))**(1.0 + 2.0*s) y = 1.0/(1.0 - D*log(18*s)/(4.0*s)) zpl = 2.0/(etil*nf**2*(sqrt(2.0 - nf**2/mf**2) + 1.0)) zmi = 2.0/(etil*nf**2*(sqrt(2.0 - nf**2/mf**2) - 1.0)) C2pl = zpl**2*log(1.0 + 2.0*zpl/3.0)/(2.0*y + 3.0*zpl/2.0) C2mi = zmi**2*log(1.0 + 2.0*zmi/3.0)/(2.0*y + 3.0*zmi/2.0) H = C2mi - C2pl sigma(m) = q*hi*8.86e-17*nf**4/etil*(A*D*L+F*G*H) enddo m_loop end function Aq_excit_n_janev function Aq_excit_n(eb, q, n, m_max) result(sigma) !+Calculates an array of the excitation cross sections for a neutral Hydrogen atom transitioning from !+the `n` state to the m=1..`m_max` states due to a collision an ion with charge `q` at energy `eb` !+ !+@note Uses specialized cross sections if available else uses generic cross sections !+ !+###Equation !+$$ A^{q+} + H(n) \rightarrow A^{q+} + H(m=1..m_{max}), q \gt 3, m \gt n, n \gt 3 $$ !+ !+###References !+* Page 132 in Ref. 5 [[atomic_tables(module)]] !+* Page 134 in Ref. 5 [[atomic_tables(module)]] !+* Page 136 in Ref. 5 [[atomic_tables(module)]] !+* Page 138 in Ref. 5 [[atomic_tables(module)]] !+* Page 140 in Ref. 5 [[atomic_tables(module)]] !+* Page 142 in Ref. 5 [[atomic_tables(module)]] !+* Page 142 in Ref. 5 [[atomic_tables(module)]] !+* Page 144 in Ref. 5 [[atomic_tables(module)]] !+* Page 146 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge integer, intent(in) :: n !+ Initial atomic energy level/state integer, intent(in) :: m_max !+ Number of m states to calculate real(Float64), dimension(m_max) :: sigma !+ Array of cross sections where the m'th index refers to !+an excitation from the `n` state to the m'th state [\(cm^2\)] select case (n) case (0) stop case (1) sigma = Aq_excit_1_janev(eb, q, m_max) case (2) sigma = Aq_excit_2_janev(eb, q, m_max) case (3) sigma = Aq_excit_3_janev(eb, q, m_max) case DEFAULT sigma = Aq_excit_n_janev(eb, q, n, m_max) end select end function Aq_excit_n function Aq_excit_n_m(eb ,q, n, m) result(sigma) !+Calculates the excitation cross section for a neutral Hydrogen atom transitioning from !+the `n`\(\rightarrow\)`m` state due to a collision an ion with charge `q` at energy `eb` !+ !+@note Uses specialized cross sections if available else uses generic cross sections !+ !+###Equation !+$$ A^{q+} + H(n) \rightarrow A^{q+} + H(m), q \gt 3, m \gt n $$ !+ !+###References !+* Page 132 in Ref. 5 [[atomic_tables(module)]] !+* Page 134 in Ref. 5 [[atomic_tables(module)]] !+* Page 136 in Ref. 5 [[atomic_tables(module)]] !+* Page 138 in Ref. 5 [[atomic_tables(module)]] !+* Page 140 in Ref. 5 [[atomic_tables(module)]] !+* Page 142 in Ref. 5 [[atomic_tables(module)]] !+* Page 142 in Ref. 5 [[atomic_tables(module)]] !+* Page 144 in Ref. 5 [[atomic_tables(module)]] !+* Page 146 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge integer, intent(in) :: n !+ Initial atomic energy level/state integer, intent(in) :: m !+ Final atomic energy level/state real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(12) :: sigma_m sigma_m = Aq_excit_n(eb, q, n, 12) if(m.le.0) then sigma = sum(sigma_m) else sigma = sigma_m(m) endif end function Aq_excit_n_m function Aq_excit(eb, q, n_max, m_max) result(sigma) !+Calculates an matrix of the excitation cross sections for a neutral Hydrogen atom transitioning from !+the n=1..`n_max` state to the m=1..`m_max` states due to a collision an ion with charge `q` at energy `eb` !+ !+@note Uses specialized cross sections if available else uses generic cross sections !+ !+###Equation !+$$ A^{q+} + H(n=1..n_{max}) \rightarrow A^{q+} + H(m=1..m_{max}), q \gt 3, m \gt n$$ !+ !+###References !+* Page 132 in Ref. 5 [[atomic_tables(module)]] !+* Page 134 in Ref. 5 [[atomic_tables(module)]] !+* Page 136 in Ref. 5 [[atomic_tables(module)]] !+* Page 138 in Ref. 5 [[atomic_tables(module)]] !+* Page 140 in Ref. 5 [[atomic_tables(module)]] !+* Page 142 in Ref. 5 [[atomic_tables(module)]] !+* Page 142 in Ref. 5 [[atomic_tables(module)]] !+* Page 144 in Ref. 5 [[atomic_tables(module)]] !+* Page 146 in Ref. 5 [[atomic_tables(module)]] !+ real(Float64), intent(in) :: eb !+ Collision energy [keV] integer, intent(in) :: q !+ Ion charge integer, intent(in) :: n_max !+ Number of n states to calculate integer, intent(in) :: m_max !+ Number of m states to calculate real(Float64), dimension(n_max, m_max) :: sigma !+ Matrix of cross sections where the subscripts refers to !+an excitation from the `n` state to the m'th state: Aq_excit[n,m] [\(cm^2\)] real(Float64), dimension(12,12) :: sigma_full integer :: n, m do n=1,12 sigma_full(n,:) = Aq_excit_n(eb, q, n, 12) enddo sigma = sigma_full(1:n_max,1:m_max) end function Aq_excit function d_d_fusion_t(eb) result(sigma) !+Calculates total cross section at a given Deuterium energy, `eb`, !+for the Tritium branch of Deuterium-Deutrium nuclear reactions !+ !+###Equation !+$$ D + D \rightarrow T(1.01 MeV) + p(3.02 MeV) (50%)$$ !+ !+###References !+* Equations 8-9 !+* Table IV in Ref. 7 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Deuterium energy [keV] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(5), parameter :: A = [ 5.5576d4, 2.1054d2, & -3.2638d-2, 1.4987d-6, & 1.8181d-10 ] real(Float64), dimension(4), parameter :: B = [0.d0,0.d0,0.d0,0.d0] real(Float64), parameter :: Bg = 31.3970 real(Float64) :: S, E E = min(max(eb,0.5),5000.0) S = (A(1) + E*(A(2) + E*(A(3) + E*(A(4) + E*A(5))))) / & (1 + E*(B(1) + E*(B(2) + E*(B(3) + E*B(4))))) sigma = (1.0d-27)*(S/(E*exp(Bg/sqrt(E)))) end function d_d_fusion_t function d_d_fusion_he(eb) result(sigma) !+Calculates total cross section at a given deuterium energy, `eb`, !+for the Helium-3 branch of Deuterium-Deutrium nuclear reactions !+ !+###Equation !+$$ D + D \rightarrow He^3(0.82 MeV) + n(2.45 MeV) (50%)$$ !+ !+###References !+* Equations 8-9 !+* Table IV in Ref. 7 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Deuterium energy [keV] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(5), parameter :: A = [ 5.3701d4, 3.3027d2, & -1.2706d-1, 2.9327d-5, & -2.5151d-9 ] real(Float64), dimension(4), parameter :: B = [0.d0,0.d0,0.d0,0.d0] real(Float64), parameter :: Bg = 31.3970 real(Float64) :: S, E E = min(max(eb,0.5),4900.0) S = (A(1) + E*(A(2) + E*(A(3) + E*(A(4) + E*A(5))))) / & (1 + E*(B(1) + E*(B(2) + E*(B(3) + E*B(4))))) sigma = (1.0d-27)*(S/(E*exp(Bg/sqrt(E)))) end function d_d_fusion_he function d_t_fusion(eb) result(sigma) !+Calculates total cross section at a given deuterium energy, `eb`, !+for Deuterium-Tritium nuclear reactions in the range [0.5-550 keV] !+ !+###Equation !+$$ D + T \rightarrow He^4(3.5 MeV) + n(14.1 MeV)$$ !+ !+###References !+* Equations 8-9 !+* Table IV, VI in Ref. 7 [[atomic_tables(module)]] real(Float64), intent(in) :: eb !+ Deuterium energy [keV] real(Float64) :: sigma !+ Cross Section [\(cm^2\)] real(Float64), dimension(5), parameter :: A1 = [ 6.927d4, 7.454d8, & 2.050d6, 5.2002d4, & 0.d0 ] real(Float64), dimension(4), parameter :: B1 = [ 6.38d1, -9.95d-1, & 6.981d-5, 1.728d-4 ] real(Float64), dimension(5), parameter :: A2 = [-1.4714d6, 0.d0, & 0.d0, 0.d0, 0.d0 ] real(Float64), dimension(4), parameter :: B2 = [-8.4127d-3, 4.7983d-6, & -1.0748d-9, 8.5184d-14 ] real(Float64), parameter :: Bg = 34.3827 real(Float64), dimension(5) :: A real(Float64), dimension(4) :: B real(Float64) :: S, E E = min(max(eb,0.5),4700.0) if(E.le.530.0) then A = A1 B = B1 else A = A2 B = B2 endif S = (A(1) + E*(A(2) + E*(A(3) + E*(A(4) + E*A(5))))) / & (1 + E*(B(1) + E*(B(2) + E*(B(3) + E*B(4))))) sigma = (1.0d-27)*(S/(E*exp(Bg/sqrt(E)))) end function d_t_fusion function simpsons_rule(f, dx) result(I) !+ Performs 1D integration using Simpsons rule !+ !+ ###References !+* [Simpson's rule](http://mathworld.wolfram.com/SimpsonsRule.html) real(Float64), dimension(:), intent(in) :: f !+ Array of equally spaced \(f(x)\) values real(Float64), intent(in) :: dx !+ Spacing between x values real(Float64) :: I integer :: s, ii s = size(f) I = 0.d0 if(mod(s,2).eq.1) then write(*,'(a)') "Length of array must be even" return endif I = f(1) do ii=2,s-1 if(mod(ii,2).eq.1) then I = I + 4.0*f(ii) else I = I + 2.0*f(ii) endif enddo I = I + f(s) I = (dx/3.0)*I end function simpsons_rule subroutine bt_maxwellian_eb(fn, T, eb, am, ab, rate) !+ Calculates Maxwellian reaction rate for a beam with atomic mass `ab` and energy `eb` !+firing into a target with atomic mass `am` and temperature `T` which has a cross section given by the function `fn` interface function fn(a) !+Cross section function real(8) :: fn !sigma real(8), intent(in) :: a !eb end function fn end interface real(Float64), intent(in) :: T !+Target temperature [keV] real(Float64), intent(in) :: eb !+Beam energy [keV] real(Float64), intent(in) :: am !+Target atomic mass [amu] real(Float64), intent(in) :: ab !+Beam atomic mass [amu] real(Float64), intent(out) :: rate !+Reaction Rate [\(cm^3/s\)] integer :: n_vr real(Float64) :: vr_max, dvr real(Float64), dimension(32) :: vr real(Float64), dimension(32) :: fr integer :: n_vz real(Float64) :: vz_max,dvz real(Float64), dimension(62) :: vz real(Float64), dimension(62) :: fz real(Float64) :: T_per_amu, eb_per_amu, ared, sig, sig_eff real(Float64) :: zb, u2_to_erel, u2, erel, v_therm, dE integer :: i, j n_vr = 32 vr_max = 4.d0 dvr = vr_max/(n_vr - 1.d0) do i=1,n_vr vr(i) = (i-1)*dvr enddo n_vz = 62 vz_max = 4.d0 dvz = 2.0*vz_max/(n_vz - 1.d0) do i=1,n_vz vz(i) = (i-1)*dvz - vz_max enddo T_per_amu = max(T, 1.d-6)/am eb_per_amu = eb/ab ared = am*ab/(am + ab) v_therm = 1.384d6 * sqrt(T_per_amu*1.d3) zb = sqrt(eb_per_amu/T_per_amu) u2_to_erel = ared*T_per_amu fz = 0.d0 fr = 0.d0 do i=1,n_vz do j=1,n_vr u2 = (zb - vz(i))**2.0 + vr(j)**2.0 erel = u2_to_erel*u2 sig = fn(erel) fr(j) = sig*sqrt(u2)*exp(-(vz(i)**2.0 + vr(j)**2.0))*vr(j) enddo fz(i) = simpsons_rule(fr, dvr) enddo sig_eff = (2.0/sqrt(PI))*simpsons_rule(fz, dvz) rate = sig_eff*v_therm end subroutine bt_maxwellian_eb subroutine bt_maxwellian_n(fn, T, eb, am, ab, n, rate) !+ Calculates Maxwellian reaction rate for a beam with atomic mass `ab`, energy `eb`, and energy level `n` !+firing into a target with atomic mass `am` and temperature `T` which has a cross section given by the function `fn` interface function fn(a, b) !+Cross section function real(8) :: fn !sigma real(8), intent(in) :: a !eb integer, intent(in) :: b !n end function fn end interface real(Float64), intent(in) :: T !+Target temperature [keV] real(Float64), intent(in) :: eb !+Beam energy [keV] real(Float64), intent(in) :: am !+Target atomic mass [amu] real(Float64), intent(in) :: ab !+Beam atomic mass [amu] integer, intent(in) :: n !+Initial atomic energy level/state real(Float64), intent(out) :: rate !+Reaction Rate [\(cm^3/s\)] logical :: dxc integer :: n_vr real(Float64) :: vr_max, dvr real(Float64), dimension(32) :: vr real(Float64), dimension(32) :: fr integer :: n_vz real(Float64) :: vz_max,dvz real(Float64), dimension(62) :: vz real(Float64), dimension(62) :: fz real(Float64) :: T_per_amu, eb_per_amu, ared, sig, sig_eff real(Float64) :: zb, u2_to_erel, u2, erel, v_therm, dE integer :: i, j n_vr = 32 vr_max = 4.d0 dvr = vr_max/(n_vr - 1.d0) do i=1,n_vr vr(i) = (i-1)*dvr enddo n_vz = 62 vz_max = 4.d0 dvz = 2.0*vz_max/(n_vz - 1.d0) do i=1,n_vz vz(i) = (i-1)*dvz - vz_max enddo T_per_amu = max(T, 1.d-6)/am eb_per_amu = eb/ab ared = am*ab/(am + ab) dE = (13.6d-3)/(n**2.0) v_therm = 1.384d6 * sqrt(T_per_amu*1.d3) zb = sqrt(eb_per_amu/T_per_amu) u2_to_erel = ared*T_per_amu if(ared.lt.0.5) ared = 1.0 !for electron interactions fz = 0.d0 fr = 0.d0 do i=1,n_vz do j=1,n_vr u2 = (zb - vz(i))**2.0 + vr(j)**2.0 erel = u2_to_erel*u2 if(erel.ge.dE) then sig = fn(erel/ared,n) else sig = 0.d0 endif fr(j) = sig*sqrt(u2)*exp(-(vz(i)**2.0 + vr(j)**2.0))*vr(j) enddo fz(i) = simpsons_rule(fr, dvr) enddo sig_eff = (2.0/sqrt(PI))*simpsons_rule(fz, dvz) rate = sig_eff*v_therm end subroutine bt_maxwellian_n subroutine bt_maxwellian_q_n(fqn, q, T, eb, am, ab, n, rate) !+ Calculates Maxwellian reaction rate for a beam with atomic mass `ab`, energy `eb`, and energy level `n` !+firing into a target with atomic mass `am`, temperature `T`, and charge `q` which has a cross section given by the function `fqn` interface function fqn(a, b, c) !+Cross section function real(8) :: fqn !sigma real(8), intent(in) :: a !eb integer, intent(in) :: b !q integer, intent(in) :: c !n end function fqn end interface integer, intent(in) :: q !+Target charge real(Float64), intent(in) :: T !+Target temperature [keV] real(Float64), intent(in) :: eb !+Beam energy [keV] real(Float64), intent(in) :: am !+Target atomic mass [amu] real(Float64), intent(in) :: ab !+Beam atomic mass [amu] integer, intent(in) :: n !+Initial atomic energy level/state real(Float64), intent(out) :: rate !+Reaction Rate [\(cm^3/s\)] integer :: n_vr real(Float64) :: vr_max, dvr real(Float64), dimension(32) :: vr real(Float64), dimension(32) :: fr integer :: n_vz real(Float64) :: vz_max, dvz real(Float64), dimension(62) :: vz real(Float64), dimension(62) :: fz real(Float64) :: T_per_amu, eb_per_amu, ared, sig, sig_eff real(Float64) :: zb, u2_to_erel, u2, erel, v_therm, dE integer :: i, j n_vr = 32 vr_max = 4.d0 dvr = vr_max/(n_vr - 1.d0) do i=1,n_vr vr(i) = (i-1)*dvr enddo n_vz = 62 vz_max = 4.d0 dvz = 2.0*vz_max/(n_vz - 1.d0) do i=1,n_vz vz(i) = (i-1)*dvz - vz_max enddo T_per_amu = max(T, 1.d-6)/am eb_per_amu = eb/ab ared = am*ab/(am + ab) dE = (13.6d-3)/(n**2.0) v_therm = 1.384d6 * sqrt(T_per_amu*1.d3) zb = sqrt(eb_per_amu/T_per_amu) u2_to_erel = ared*T_per_amu if(ared.lt.0.5) ared = 1.0 fz = 0.d0 fr = 0.d0 do i=1,n_vz do j=1,n_vr u2 = (zb - vz(i))**2.0 + vr(j)**2.0 erel = u2_to_erel*u2 if(erel.ge.dE) then sig = fqn(erel/ared, q, n) else sig = 0.d0 endif fr(j) = sig*sqrt(u2)*exp(-(vz(i)**2.0 + vr(j)**2.0))*vr(j) enddo fz(i) = simpsons_rule(fr, dvr) enddo sig_eff = (2.0/sqrt(PI))*simpsons_rule(fz, dvz) rate = sig_eff*v_therm end subroutine bt_maxwellian_q_n subroutine bt_maxwellian_n_m(fnm, T, eb, am, ab, n, m, rate, deexcit) !+ Calculates Maxwellian reaction rate for a `n`\(\rightarrow)`m` transition due to a beam with atomic mass `ab` and energy `eb` !+firing into a target with atomic mass `am` and temperature `T` which has a cross section given by the function `fnm` interface function fnm(a, b, c) !+Cross section function real(8) :: fnm !sigma real(8), intent(in) :: a !eb integer, intent(in) :: b !n integer, intent(in) :: c !m end function fnm end interface real(Float64), intent(in) :: T !+Target temperature [keV] real(Float64), intent(in) :: eb !+Beam energy [keV] real(Float64), intent(in) :: am !+Target atomic mass [amu] real(Float64), intent(in) :: ab !+Beam atomic mass [amu] integer, intent(in) :: n !+Initial atomic energy level/state integer, intent(in) :: m !+Final atomic energy level/state real(Float64), intent(out) :: rate !+Reaction Rate [\(cm^3/s\)] logical, intent(in), optional :: deexcit !+Calculate de-excitation reaction rate logical :: dxc integer :: n_vr real(Float64) :: vr_max, dvr real(Float64), dimension(32) :: vr real(Float64), dimension(32) :: fr integer :: n_vz real(Float64) :: vz_max, dvz real(Float64), dimension(62) :: vz real(Float64), dimension(62) :: fz real(Float64) :: T_per_amu, eb_per_amu, ared, sig, sig_eff real(Float64) :: zb, u2_to_erel, u2, erel, dE, factor, En, Em, v_therm integer :: i, j if(present(deexcit)) then dxc = deexcit else dxc = .False. endif n_vr = 32 vr_max = 4.d0 dvr = vr_max/(n_vr - 1.d0) do i=1,n_vr vr(i) = (i-1)*dvr enddo n_vz = 62 vz_max = 4.d0 dvz = 2.0*vz_max/(n_vz - 1.d0) do i=1,n_vz vz(i) = (i-1)*dvz - vz_max enddo En = (13.6d-3)*(1.0 - (1.d0/n)**2.0) Em = (13.6d-3)*(1.0 - (1.d0/m)**2.0) dE = Em - En T_per_amu = max(T, 1.d-6)/am eb_per_amu = eb/ab ared = am*ab/(am + ab) v_therm = 1.384d6 * sqrt(T_per_amu*1.d3) zb = sqrt(eb_per_amu/T_per_amu) u2_to_erel = ared*T_per_amu if(ared.lt.0.5) ared = 1.0 fz = 0.d0 fr = 0.d0 do i=1,n_vz do j=1,n_vr u2 = (zb - vz(i))**2.0 + vr(j)**2.0 erel = u2_to_erel*u2 if(dxc) then factor = (erel + dE)/erel erel = erel + dE else factor = 1.0 endif if(erel.ge.dE) then sig = fnm(erel/ared, n, m) else sig = 0.d0 endif fr(j) = factor*sig*sqrt(u2)*exp(-(vz(i)**2.0 + vr(j)**2.0))*vr(j) enddo fz(i) = simpsons_rule(fr, dvr) enddo sig_eff = (2.0/sqrt(PI))*simpsons_rule(fz, dvz) rate = sig_eff*v_therm if(dxc) rate = rate*(real(n)/real(m))**2.0 end subroutine bt_maxwellian_n_m subroutine bt_maxwellian_q_n_m(fqnm, q, T, eb, am, ab, n, m, rate, deexcit) !+ Calculates Maxwellian reaction rate for a `n`\(\rightarrow)`m` transition due to a beam with atomic mass `ab` and energy `eb` !+firing into a target with atomic mass `am`, temperature `T`, and charge `q` which has a cross section given by the function `fqnm` interface function fqnm(a, b, c, d) !+Cross section function real(8) :: fqnm !sigma real(8), intent(in) :: a !eb integer, intent(in) :: b !q integer, intent(in) :: c !n integer, intent(in) :: d !m end function fqnm end interface integer, intent(in) :: q !+Target charge real(Float64), intent(in) :: T !+Target temperature [keV] real(Float64), intent(in) :: eb !+Beam energy [keV] real(Float64), intent(in) :: am !+Target atomic mass [amu] real(Float64), intent(in) :: ab !+Beam atomic mass [amu] integer, intent(in) :: n !+Initial atomic energy level/state integer, intent(in) :: m !+Final atomic energy level/state real(Float64), intent(out) :: rate !+Reaction Rate [\(cm^3/s\)] logical, intent(in), optional :: deexcit !+Calculate de-excitation reaction rate logical :: dxc integer :: n_vr real(Float64) :: vr_max, dvr real(Float64), dimension(32) :: vr real(Float64), dimension(32) :: fr integer :: n_vz real(Float64) :: vz_max, dvz real(Float64), dimension(62) :: vz real(Float64), dimension(62) :: fz real(Float64) :: T_per_amu, eb_per_amu, ared, sig, sig_eff real(Float64) :: zb, u2_to_erel, u2, erel, dE, factor, En, Em, v_therm integer :: i, j if(present(deexcit)) then dxc = deexcit else dxc = .False. endif n_vr = 32 vr_max = 4.d0 dvr = vr_max/(n_vr - 1.d0) do i=1,n_vr vr(i) = (i-1)*dvr enddo n_vz = 62 vz_max = 4.d0 dvz = 2.0*vz_max/(n_vz - 1.d0) do i=1,n_vz vz(i) = (i-1)*dvz - vz_max enddo En = (13.6d-3)*(1.0 - (1.d0/n)**2.0) Em = (13.6d-3)*(1.0 - (1.d0/m)**2.0) dE = Em - En T_per_amu = max(T, 1.d-6)/am eb_per_amu = eb/ab ared = am*ab/(am + ab) v_therm = 1.384d6 * sqrt(T_per_amu*1.d3) zb = sqrt(eb_per_amu/T_per_amu) u2_to_erel = ared*T_per_amu if(ared.lt.0.5) ared = 1.0 fz = 0.d0 fr = 0.d0 do i=1,n_vz do j=1,n_vr u2 = (zb - vz(i))**2.0 + vr(j)**2.0 erel = u2_to_erel*u2 if(dxc) then factor = (erel + dE)/erel erel = erel + dE else factor = 1.0 endif if(erel.ge.dE) then sig = fqnm(erel/ared, q, n, m) else sig = 0.d0 endif fr(j) = factor*sig*sqrt(u2)*exp(-(vz(i)**2.0 + vr(j)**2.0))*vr(j) enddo fz(i) = simpsons_rule(fr, dvr) enddo sig_eff = (2.0/sqrt(PI))*simpsons_rule(fz, dvz) rate = sig_eff*v_therm if(dxc) rate = rate*(real(n)/real(m))**2.0 end subroutine bt_maxwellian_q_n_m subroutine write_einstein(id, n_max, m_max) !+ Write Einstein coefficients to HDF5 file integer(HID_T), intent(inout) :: id !+ HDF5 file or group object id integer, intent(in) :: n_max !+ Number of initial atomic energy states to calculate integer, intent(in) :: m_max !+ Number of final atomic energy states to calculate real(Float64), dimension(n_max,m_max) :: ein integer(HID_T) :: gid integer(HSIZE_T), dimension(1) :: dim1 integer(HSIZE_T), dimension(2) :: dim2 integer :: error ein(:,:) = EINSTEIN(1:n_max,1:m_max) call h5gcreate_f(id, "spontaneous", gid, error) dim1 = [1] dim2 = [n_max, m_max] call h5ltmake_dataset_int_f(gid, "n_max", 0, dim1, [n_max], error) call h5ltmake_dataset_int_f(gid, "m_max", 0, dim1, [m_max], error) call h5ltmake_compressed_dataset_double_f(gid, "einstein", 2, dim2, ein, error) call h5ltset_attribute_string_f(id, "spontaneous", "description", & "Atomic rates for spontaneous emission/deexcitation", error) call h5ltset_attribute_string_f(gid, "n_max", "description", & "Number of initial energy levels", error) call h5ltset_attribute_string_f(gid, "m_max", "description", & "Number of final energy levels", error) call h5ltset_attribute_string_f(gid, "einstein", "description", & "n/m resolved einstein coefficients: einstein(n,m)", error) call h5ltset_attribute_string_f(gid, "einstein", "units", "1/s", error) call h5ltset_attribute_string_f(gid, "einstein", "reaction", & "H(n) -> H(m) + ph, n > m", error) call h5gclose_f(gid, error) end subroutine write_einstein subroutine write_bb_H_H(id, namelist_file, n_max, m_max) !+ Write Hydrogen-Hydrogen interaction cross sections to a HDF5 file integer(HID_T), intent(inout) :: id !+ HDF5 file or group object id character(len=*), intent(in) :: namelist_file !+ Namelist file that contains settings integer, intent(in) :: n_max !+ Number of initial atomic energy states to calculate integer, intent(in) :: m_max !+ Number of final atomic energy states to calculate real(Float64) :: emin real(Float64) :: emax integer :: nenergy real(Float64) :: eb real(Float64) :: dlogE real(Float64), dimension(:), allocatable :: ebarr real(Float64), dimension(:,:), allocatable :: ioniz real(Float64), dimension(:,:,:), allocatable :: cx, excit integer(HID_T) :: gid integer(HSIZE_T), dimension(1) :: dim1 integer(HSIZE_T), dimension(2) :: dim2 integer(HSIZE_T), dimension(3) :: dim3 integer :: i, cnt, error logical :: exis NAMELIST /H_H_cross/ nenergy, emin, emax nenergy = 200; emin = 1.d-3 ; emax = 8.d2 inquire(file=namelist_file,exist=exis) if(.not.exis) then write(*,'(a,a)') 'WRITE_BB_H_H: Input file does not exist: ',trim(namelist_file) write(*,'(a)') 'Continuing with default settings...' else open(13,file=namelist_file) read(13,NML=H_H_cross) close(13) endif allocate(ebarr(nenergy)) allocate(ioniz(n_max,nenergy)) allocate(cx(n_max,m_max,nenergy)) allocate(excit(n_max,m_max,nenergy)) ebarr = 0.d0 ioniz = 0.d0 cx = 0.d0 excit = 0.d0 write(*,'(a)') "---- H-H cross sections settings ----" write(*,'(T2,"Emin = ",e9.2, " keV")') emin write(*,'(T2,"Emax = ",e9.2, " keV")') emax write(*,'(T2,"Nenergy = ", i4)') nenergy write(*,*) '' cnt = 0 dlogE = (log10(emax) - log10(emin))/(nenergy - 1) !$OMP PARALLEL DO private(i, eb) do i=1, nenergy eb = 10.d0**(log10(emin) + (i-1)*dlogE) ebarr(i) = eb cx(:,:,i) = p_cx(eb, n_max, m_max) excit(:,:,i) = p_excit(eb, n_max, m_max) ioniz(:,i) = p_ioniz(eb, n_max) cnt = cnt + 1 WRITE(*,'(f7.2,"%",a,$)') 100*cnt/real(nenergy),char(13) enddo !$OMP END PARALLEL DO call h5gcreate_f(id, "H_H", gid, error) dim1 = [1] dim2 = [n_max, nenergy] dim3 = [n_max, m_max, nenergy] call h5ltmake_dataset_int_f(gid, "nenergy", 0, dim1, [nenergy], error) call h5ltmake_dataset_int_f(gid, "n_max", 0, dim1, [n_max], error) call h5ltmake_dataset_int_f(gid, "m_max", 0, dim1, [m_max], error) call h5ltmake_dataset_double_f(gid, "dlogE", 0, dim1, [dlogE], error) call h5ltmake_dataset_double_f(gid, "emin", 0, dim1, [emin], error) call h5ltmake_dataset_double_f(gid, "emax", 0, dim1, [emax], error) dim1 = [nenergy] call h5ltmake_compressed_dataset_double_f(gid, "energy", 1, dim1, ebarr, error) call h5ltmake_compressed_dataset_double_f(gid, "cx", 3, dim3, cx, error) call h5ltmake_compressed_dataset_double_f(gid, "ionization", 2, dim2, ioniz, error) call h5ltmake_compressed_dataset_double_f(gid, "excitation", 3, dim3, excit, error) call h5ltset_attribute_string_f(id, "H_H", "description", & "Cross sections for Hydrogen-Hydrogen interactions", error) call h5ltset_attribute_string_f(gid, "nenergy", "description", & "Number of nucleon energy values", error) call h5ltset_attribute_string_f(gid, "n_max", "description", & "Number of initial energy levels", error) call h5ltset_attribute_string_f(gid, "m_max", "description", & "Number of final energy levels", error) call h5ltset_attribute_string_f(gid, "energy", "description", & "Nucleon energy values", error) call h5ltset_attribute_string_f(gid, "energy", "units", "keV/amu", error) call h5ltset_attribute_string_f(gid, "dlogE", "description", & "Energy spacing in log-10", error) call h5ltset_attribute_string_f(gid, "dlogE", "units", "log10(keV/amu)", error) call h5ltset_attribute_string_f(gid, "emin","description", & "Minimum energy", error) call h5ltset_attribute_string_f(gid, "emin", "units", "keV/amu", error) call h5ltset_attribute_string_f(gid, "emax","description", & "Maximum energy", error) call h5ltset_attribute_string_f(gid, "emax", "units", "keV/amu", error) call h5ltset_attribute_string_f(gid, "cx", "description", & "n/m resolved charge exchange cross sections: cx(n,m,energy)", error) call h5ltset_attribute_string_f(gid, "cx", "units", "cm^2", error) call h5ltset_attribute_string_f(gid, "cx", "reaction", & "H(+) + H(n) -> H(m) + H(+)", error) call h5ltset_attribute_string_f(gid, "excitation", "description", & "n/m resolved excitation cross sections: excitation(n,m,energy)", error) call h5ltset_attribute_string_f(gid, "excitation", "units", "cm^2", error) call h5ltset_attribute_string_f(gid, "excitation", "reaction", & "H(+) + H(n) -> H(+) + H(m), m > n", error) call h5ltset_attribute_string_f(gid, "ionization", "description", & "n resolved ionization cross sections: ionization(n,energy)", error) call h5ltset_attribute_string_f(gid, "ionization", "units", "cm^2", error) call h5ltset_attribute_string_f(gid, "ionization", "reaction", & "H(+) + H(n) -> H(+) + H(+) + e-", error) call h5gclose_f(gid, error) deallocate(ebarr, cx, excit, ioniz) end subroutine write_bb_H_H subroutine write_bb_H_e(id, namelist_file, n_max, m_max) !+ Write Hydrogen-Electron interaction cross sections to a HDF5 file integer(HID_T), intent(inout) :: id !+ HDF5 file or group object id character(len=*), intent(in) :: namelist_file !+ Namelist file that contains settings integer, intent(in) :: n_max !+ Number of initial atomic energy states to calculate integer, intent(in) :: m_max !+ Number of final atomic energy states to calculate real(Float64) :: emin real(Float64) :: emax integer :: nenergy real(Float64) :: eb real(Float64) :: dlogE real(Float64), dimension(:), allocatable :: ebarr real(Float64), dimension(:,:), allocatable :: ioniz real(Float64), dimension(:,:,:), allocatable :: excit integer(HID_T) :: gid integer(HSIZE_T), dimension(1) :: dim1 integer(HSIZE_T), dimension(2) :: dim2 integer(HSIZE_T), dimension(3) :: dim3 integer :: i, cnt, error logical :: exis NAMELIST /H_e_cross/ nenergy, emin, emax nenergy = 200; emin = 1.d-3 ; emax = 8.d2 inquire(file=namelist_file,exist=exis) if(.not.exis) then write(*,'(a,a)') 'WRITE_BB_H_E: Input file does not exist: ',trim(namelist_file) write(*,'(a)') 'Continuing with default settings...' else open(13,file=namelist_file) read(13,NML=H_e_cross) close(13) endif allocate(ebarr(nenergy)) allocate(ioniz(n_max,nenergy)) allocate(excit(n_max,m_max,nenergy)) ebarr = 0.d0 ioniz = 0.d0 excit = 0.d0 write(*,'(a)') "---- H-e cross sections settings ----" write(*,'(T2,"Emin = ",e9.2, " keV")') emin write(*,'(T2,"Emax = ",e9.2, " keV")') emax write(*,'(T2,"Nenergy = ", i4)') nenergy write(*,*) '' cnt = 0 dlogE = (log10(emax) - log10(emin))/(nenergy - 1) !$OMP PARALLEL DO private(i, eb) do i=1, nenergy eb = 10.d0**(log10(emin) + (i-1)*dlogE) ebarr(i) = eb excit(:,:,i) = e_excit(eb, n_max, m_max) ioniz(:,i) = e_ioniz(eb, n_max) cnt = cnt + 1 WRITE(*,'(f7.2,"%",a,$)') 100*cnt/real(nenergy),char(13) enddo !$OMP END PARALLEL DO call h5gcreate_f(id, "H_e", gid, error) dim1 = [1] dim2 = [n_max, nenergy] dim3 = [n_max, m_max, nenergy] call h5ltmake_dataset_int_f(gid, "nenergy", 0, dim1, [nenergy], error) call h5ltmake_dataset_int_f(gid, "n_max", 0, dim1, [n_max], error) call h5ltmake_dataset_int_f(gid, "m_max", 0, dim1, [m_max], error) call h5ltmake_dataset_double_f(gid, "dlogE", 0, dim1, [dlogE], error) call h5ltmake_dataset_double_f(gid, "emin", 0, dim1, [emin], error) call h5ltmake_dataset_double_f(gid, "emax", 0, dim1, [emax], error) dim1 = [nenergy] call h5ltmake_compressed_dataset_double_f(gid, "energy", 1, dim1, ebarr, error) call h5ltmake_compressed_dataset_double_f(gid, "ionization", 2, dim2, ioniz, error) call h5ltmake_compressed_dataset_double_f(gid, "excitation", 3, dim3, excit, error) call h5ltset_attribute_string_f(id, "H_e", "description", & "Cross sections for Hydrogen-Electron interactions", error) call h5ltset_attribute_string_f(gid, "nenergy", "description", & "Number of nucleon energy values", error) call h5ltset_attribute_string_f(gid, "n_max", "description", & "Number of initial energy levels", error) call h5ltset_attribute_string_f(gid, "m_max", "description", & "Number of final energy levels", error) call h5ltset_attribute_string_f(gid, "energy", "description", & "Nucleon energy values", error) call h5ltset_attribute_string_f(gid, "energy", "units", "keV/amu", error) call h5ltset_attribute_string_f(gid, "dlogE", "description", & "Energy spacing in log-10", error) call h5ltset_attribute_string_f(gid, "dlogE", "units", "log10(keV/amu)", error) call h5ltset_attribute_string_f(gid, "emin","description", & "Minimum Energy", error) call h5ltset_attribute_string_f(gid, "emin", "units", "keV/amu", error) call h5ltset_attribute_string_f(gid, "emax","description", & "Maximum Energy", error) call h5ltset_attribute_string_f(gid, "emax", "units", "keV/amu", error) call h5ltset_attribute_string_f(gid, "excitation", "description", & "n/m resolved excitation cross sections: excitation(n,m,energy)", error) call h5ltset_attribute_string_f(gid, "excitation", "units", "cm^2", error) call h5ltset_attribute_string_f(gid, "excitation", "reaction", & "e- + H(n) -> e- + H(m), m > n", error) call h5ltset_attribute_string_f(gid, "ionization", "description", & "n resolved ionization cross sections: ionization(n,energy)", error) call h5ltset_attribute_string_f(gid, "ionization", "units", "cm^2", error) call h5ltset_attribute_string_f(gid, "ionization", "reaction", & "e- + H(n) -> e- + H(+) + e-", error) call h5gclose_f(gid, error) deallocate(ebarr, ioniz, excit) end subroutine write_bb_H_e subroutine write_bb_H_Aq(id, namelist_file, n_max, m_max) !+ Write Hydrogen-Impurity interaction cross sections to a HDF5 file integer(HID_T), intent(inout) :: id !+ HDF5 file or group object id character(len=*), intent(in) :: namelist_file !+ Namelist file that contains settings integer, intent(in) :: n_max !+ Number of initial atomic energy states to calculate integer, intent(in) :: m_max !+ Number of final atomic energy states to calculate integer :: q real(Float64) :: emin real(Float64) :: emax integer :: nenergy real(Float64) :: eb real(Float64) :: dlogE real(Float64), dimension(:), allocatable :: ebarr real(Float64), dimension(:,:), allocatable :: cx, ioniz real(Float64), dimension(:,:,:), allocatable :: excit integer(HID_T) :: gid integer(HSIZE_T), dimension(1) :: dim1 integer(HSIZE_T), dimension(2) :: dim2 integer(HSIZE_T), dimension(3) :: dim3 character(len=10) :: aname character(len=5) :: asym integer :: i, cnt, error logical :: exis NAMELIST /H_Aq_cross/ q, nenergy, emin, emax nenergy = 200; emin = 1.d-3 ; emax = 8.d2 q = 6 inquire(file=namelist_file,exist=exis) if(.not.exis) then write(*,'(a,a)') 'WRITE_BB_H_Aq: Input file does not exist: ',trim(namelist_file) write(*,'(a)') 'Continuing with default settings...' else open(13,file=namelist_file) read(13,NML=H_Aq_cross) close(13) endif allocate(ebarr(nenergy)) allocate(ioniz(n_max,nenergy)) allocate(cx(n_max,nenergy)) allocate(excit(n_max,m_max,nenergy)) ebarr = 0.d0 ioniz = 0.d0 cx = 0.d0 excit = 0.d0 select case (q) case (5) aname = "Boron" asym = "H_B5" case (6) aname = "Carbon" asym = "H_C6" case DEFAULT aname = "Impurity" asym = "H_Aq" end select write(*,'(a)') "---- H-"//trim(adjustl(aname))//" cross sections settings ----" write(*,'(T2,"q = ", i2)') q write(*,'(T2,"Emin = ",e9.2, " keV")') emin write(*,'(T2,"Emax = ",e9.2, " keV")') emax write(*,'(T2,"Nenergy = ", i4)') nenergy write(*,*) '' cnt = 0 dlogE = (log10(emax) - log10(emin))/(nenergy - 1) !$OMP PARALLEL DO private(i, eb) do i=1, nenergy eb = 10.d0**(log10(emin) + (i-1)*dlogE) ebarr(i) = eb cx(:,i) = Aq_cx(eb, q, n_max) ioniz(:,i) = Aq_ioniz(eb, q, n_max) excit(:,:,i) = Aq_excit(eb, q, n_max, m_max) cnt = cnt + 1 WRITE(*,'(f7.2,"%",a,$)') 100*cnt/real(nenergy),char(13) enddo call h5gcreate_f(id, trim(adjustl(asym)), gid, error) dim1 = [1] dim2 = [n_max, nenergy] dim3 = [n_max, m_max, nenergy] call h5ltmake_dataset_int_f(gid, "nenergy", 0, dim1, [nenergy], error) call h5ltmake_dataset_int_f(gid, "n_max", 0, dim1, [n_max], error) call h5ltmake_dataset_int_f(gid, "m_max", 0, dim1, [m_max], error) call h5ltmake_dataset_double_f(gid, "dlogE", 0, dim1, [dlogE], error) call h5ltmake_dataset_double_f(gid, "emin", 0, dim1, [emin], error) call h5ltmake_dataset_double_f(gid, "emax", 0, dim1, [emax], error) dim1 = [nenergy] call h5ltmake_compressed_dataset_double_f(gid, "energy", 1, dim1, ebarr, error) call h5ltmake_compressed_dataset_double_f(gid, "cx", 2, dim2, cx, error) call h5ltmake_compressed_dataset_double_f(gid, "ionization", 2, dim2, ioniz, error) call h5ltmake_compressed_dataset_double_f(gid, "excitation", 3, dim3, excit, error) call h5ltset_attribute_string_f(id, trim(adjustl(asym)), "description", & "Cross sections for Hydrogen-"//trim(adjustl(aname))//" interactions", error) call h5ltset_attribute_string_f(gid, "nenergy", "description", & "Number of nucleon energy values", error) call h5ltset_attribute_string_f(gid, "n_max", "description", & "Number of initial energy levels", error) call h5ltset_attribute_string_f(gid, "m_max", "description", & "Number of final energy levels", error) call h5ltset_attribute_string_f(gid, "energy", "description", & "Nucleon energy values", error) call h5ltset_attribute_string_f(gid, "energy", "units", "keV/amu", error) call h5ltset_attribute_string_f(gid, "dlogE", "description", & "Energy spacing in log-10", error) call h5ltset_attribute_string_f(gid, "dlogE", "units", "log10(keV/amu)", error) call h5ltset_attribute_string_f(gid, "emin","description", & "Minimum energy", error) call h5ltset_attribute_string_f(gid, "emin", "units", "keV/amu", error) call h5ltset_attribute_string_f(gid, "emax","description", & "Maximum energy", error) call h5ltset_attribute_string_f(gid, "emax", "units", "keV/amu", error) call h5ltset_attribute_string_f(gid, "cx", "description", & "n resolved charge exchange / electron capture cross sections: cx(n,energy)", error) call h5ltset_attribute_string_f(gid, "cx", "units", "cm^2", error) call h5ltset_attribute_string_f(gid, "cx", "reaction", & "A(q+) + H(n) -> A((q-1)+) + H(+)", error) call h5ltset_attribute_string_f(gid, "excitation", "description", & "n/m resolved excitation cross sections: excitation(n,m,energy)", error) call h5ltset_attribute_string_f(gid, "excitation", "units", "cm^2", error) call h5ltset_attribute_string_f(gid, "excitation", "reaction", & "A(q+) + H(n) -> A(q+) + H(m), m > n", error) call h5ltset_attribute_string_f(gid, "ionization", "description", & "n resolved ionization cross sections: ionization(n,energy)", error) call h5ltset_attribute_string_f(gid, "ionization", "units", "cm^2", error) call h5ltset_attribute_string_f(gid, "ionization", "reaction", & "A(q+) + H(n) -> A(q+) + H(+) + e-", error) call h5gclose_f(gid, error) deallocate(ebarr, ioniz, cx, excit) end subroutine write_bb_H_Aq subroutine write_bb_D_D(id, namelist_file) !+ Write Deuterium-Deuterium interaction cross sections to a HDF5 file integer(HID_T), intent(inout) :: id !+ HDF5 file or group object id character(len=*), intent(in) :: namelist_file !+ Namelist file that contains settings integer :: nbranch = 2 real(Float64) :: emin real(Float64) :: emax integer :: nenergy real(Float64) :: eb real(Float64) :: dlogE real(Float64), dimension(:), allocatable :: ebarr real(Float64), dimension(:,:), allocatable :: fusion integer(HID_T) :: gid integer(HSIZE_T), dimension(1) :: dim1 integer(HSIZE_T), dimension(2) :: dim2 integer :: i, cnt, error logical :: exis NAMELIST /D_D_cross/ nenergy, emin, emax nenergy = 200; emin = 1.d-3 ; emax = 8.d2 inquire(file=namelist_file,exist=exis) if(.not.exis) then write(*,'(a,a)') 'WRITE_BB_D_D: Input file does not exist: ',trim(namelist_file) write(*,'(a)') 'Continuing with default settings...' else open(13,file=namelist_file) read(13,NML=D_D_cross) close(13) endif allocate(ebarr(nenergy)) allocate(fusion(nenergy,nbranch)) ebarr = 0.d0 fusion = 0.d0 write(*,'(a)') "---- D-D cross sections settings ----" write(*,'(T2,"Emin = ",e9.2, " keV")') emin write(*,'(T2,"Emax = ",e9.2, " keV")') emax write(*,'(T2,"Nenergy = ", i4)') nenergy write(*,*) '' cnt = 0 dlogE = (log10(emax) - log10(emin))/(nenergy - 1) !$OMP PARALLEL DO private(i, eb) do i=1, nenergy eb = 10.d0**(log10(emin) + (i-1)*dlogE) ebarr(i) = eb fusion(i,1) = d_d_fusion_t(eb) fusion(i,2) = d_d_fusion_he(eb) cnt = cnt + 1 WRITE(*,'(f7.2,"%",a,$)') 100*cnt/real(nenergy),char(13) enddo !$OMP END PARALLEL DO call h5gcreate_f(id, "D_D", gid, error) dim1 = [1] call h5ltmake_dataset_int_f(gid, "nbranch", 0, dim1, [nbranch], error) call h5ltmake_dataset_int_f(gid, "nenergy", 0, dim1, [nenergy], error) call h5ltmake_dataset_double_f(gid, "dlogE", 0, dim1, [dlogE], error) call h5ltmake_dataset_double_f(gid, "emin", 0, dim1, [emin], error) call h5ltmake_dataset_double_f(gid, "emax", 0, dim1, [emax], error) dim1 = [nenergy] dim2 = [nenergy, nbranch] call h5ltmake_compressed_dataset_double_f(gid, "energy", 1, dim1, ebarr, error) call h5ltmake_compressed_dataset_double_f(gid, "fusion", 2, dim2, fusion, error) call h5ltset_attribute_string_f(id, "D_D", "description", & "Cross sections for Deuterium-Deuterium interactions", error) call h5ltset_attribute_string_f(gid, "nbranch", "description", & "Number of reaction branches", error) call h5ltset_attribute_string_f(gid, "nenergy", "description", & "Number of energy values", error) call h5ltset_attribute_string_f(gid, "energy", "description", & "Deuterium energy values", error) call h5ltset_attribute_string_f(gid, "energy", "units", "keV", error) call h5ltset_attribute_string_f(gid, "dlogE", "description", & "Energy spacing in log-10", error) call h5ltset_attribute_string_f(gid, "dlogE", "units", "log10(keV)", error) call h5ltset_attribute_string_f(gid, "emin","description", & "Minimum energy", error) call h5ltset_attribute_string_f(gid, "emin", "units", "keV", error) call h5ltset_attribute_string_f(gid, "emax","description", & "Maximum energy", error) call h5ltset_attribute_string_f(gid, "emax", "units", "keV", error) call h5ltset_attribute_string_f(gid, "fusion", "description", & "Cross sections for the Tritium[1] and He3[2] branches of D-D nuclear reactions: fusion(energy, branch)", error) call h5ltset_attribute_string_f(gid, "fusion", "units", "cm^2", error) call h5ltset_attribute_string_f(gid, "fusion", "reaction", & "D + D -> [1] T(1.01 MeV) + p(3.02 MeV) (50%); [2] He3(0.82 MeV) + n(2.45 MeV) (50%)", error) call h5gclose_f(gid, error) deallocate(ebarr, fusion) end subroutine write_bb_D_D subroutine write_bb_D_T(id, namelist_file) !+ Write Deuterium-Tritium interaction cross sections to a HDF5 file integer(HID_T), intent(inout) :: id !+ HDF5 file or group object id character(len=*), intent(in) :: namelist_file !+ Namelist file that contains settings integer :: nbranch = 1 real(Float64) :: emin real(Float64) :: emax integer :: nenergy real(Float64) :: eb real(Float64) :: dlogE real(Float64), dimension(:), allocatable :: ebarr real(Float64), dimension(:,:), allocatable :: fusion integer(HID_T) :: gid integer(HSIZE_T), dimension(1) :: dim1 integer(HSIZE_T), dimension(2) :: dim2 integer :: i, cnt, error logical :: exis NAMELIST /D_T_cross/ nenergy, emin, emax nenergy = 200; emin = 1.d-3 ; emax = 8.d2 inquire(file=namelist_file,exist=exis) if(.not.exis) then write(*,'(a,a)') 'WRITE_BB_D_T: Input file does not exist: ',trim(namelist_file) write(*,'(a)') 'Continuing with default settings...' else open(13,file=namelist_file) read(13,NML=D_T_cross) close(13) endif allocate(ebarr(nenergy)) allocate(fusion(nenergy,nbranch)) ebarr = 0.d0 fusion = 0.d0 write(*,'(a)') "---- D-T cross sections settings ----" write(*,'(T2,"Emin = ",e9.2, " keV")') emin write(*,'(T2,"Emax = ",e9.2, " keV")') emax write(*,'(T2,"Nenergy = ", i4)') nenergy write(*,*) '' cnt = 0 dlogE = (log10(emax) - log10(emin))/(nenergy - 1) !$OMP PARALLEL DO private(i, eb) do i=1, nenergy eb = 10.d0**(log10(emin) + (i-1)*dlogE) ebarr(i) = eb fusion(i,1) = d_t_fusion(eb) cnt = cnt + 1 WRITE(*,'(f7.2,"%",a,$)') 100*cnt/real(nenergy),char(13) enddo !$OMP END PARALLEL DO call h5gcreate_f(id, "D_T", gid, error) dim1 = [1] call h5ltmake_dataset_int_f(gid, "nbranch", 0, dim1, [nbranch], error) call h5ltmake_dataset_int_f(gid, "nenergy", 0, dim1, [nenergy], error) call h5ltmake_dataset_double_f(gid, "dlogE", 0, dim1, [dlogE], error) call h5ltmake_dataset_double_f(gid, "emin", 0, dim1, [emin], error) call h5ltmake_dataset_double_f(gid, "emax", 0, dim1, [emax], error) dim1 = [nenergy] dim2 = [nenergy, nbranch] call h5ltmake_compressed_dataset_double_f(gid, "energy", 1, dim1, ebarr, error) call h5ltmake_compressed_dataset_double_f(gid, "fusion", 2, dim2, fusion, error) call h5ltset_attribute_string_f(id, "D_T", "description", & "Cross sections for Deuterium-Tritium interactions", error) call h5ltset_attribute_string_f(gid, "nbranch", "description", & "Number of reaction branches", error) call h5ltset_attribute_string_f(gid, "nenergy", "description", & "Number of energy values", error) call h5ltset_attribute_string_f(gid, "energy", "description", & "Deuterium energy values", error) call h5ltset_attribute_string_f(gid, "energy", "units", "keV", error) call h5ltset_attribute_string_f(gid, "dlogE", "description", & "Energy spacing in log-10", error) call h5ltset_attribute_string_f(gid, "dlogE", "units", "log10(keV)", error) call h5ltset_attribute_string_f(gid, "emin","description", & "Minimum energy", error) call h5ltset_attribute_string_f(gid, "emin", "units", "keV", error) call h5ltset_attribute_string_f(gid, "emax","description", & "Maximum energy", error) call h5ltset_attribute_string_f(gid, "emax", "units", "keV", error) call h5ltset_attribute_string_f(gid, "fusion", "description", & "Total cross sections for D-T nuclear reactions: fusion(deuterium energy, branch)", error) call h5ltset_attribute_string_f(gid, "fusion", "units", "cm^2", error) call h5ltset_attribute_string_f(gid, "fusion", "reaction", & "D + T -> He4(3.5 MeV) + n(14.1 MeV)", error) call h5gclose_f(gid, error) deallocate(ebarr, fusion) end subroutine write_bb_D_T subroutine write_bt_H_H(id, namelist_file, n_max, m_max) !+ Write Hydrogen-Hydrogen reaction rates to a HDF5 file integer(HID_T), intent(inout) :: id !+ HDF5 file or group object id character(len=*), intent(in) :: namelist_file !+ Namelist file that contains settings integer, intent(in) :: n_max !+ Number of initial atomic energy states to calculate integer, intent(in) :: m_max !+ Number of final atomic energy states to calculate real(Float64) :: emin real(Float64) :: emax integer :: nenergy real(Float64) :: tmin real(Float64) :: tmax integer :: ntemp real(Float64) :: eb real(Float64) :: dlogE real(Float64), dimension(:), allocatable :: ebarr real(Float64) :: ti real(Float64) :: dlogT real(Float64), dimension(:), allocatable :: tarr real(Float64), dimension(:,:,:,:), allocatable :: ioniz real(Float64), dimension(:,:,:,:,:), allocatable :: excit, cx integer(HID_T) :: gid integer(HSIZE_T), dimension(1) :: dim1 integer(HSIZE_T), dimension(2) :: dim2 integer(HSIZE_T), dimension(3) :: dim3 integer(HSIZE_T), dimension(4) :: dim4 integer(HSIZE_T), dimension(5) :: dim5 integer :: ie, it, ia, n, m, error, cnt real(Float64) :: rate integer, parameter :: n_bt_amu = 4 real(Float64), dimension(2,n_bt_amu) :: a logical :: exis NAMELIST /H_H_rates/ nenergy, emin, emax, ntemp, tmin, tmax nenergy = 100; emin = 1.d-3 ; emax = 4.d2 ntemp = 100; tmin = 1.d-3 ; tmax = 2.d1 inquire(file=namelist_file,exist=exis) if(.not.exis) then write(*,'(a,a)') 'WRITE_BT_H_H: Input file does not exist: ',trim(namelist_file) write(*,'(a)') 'Continuing with default settings...' else open(13,file=namelist_file) read(13,NML=H_H_rates) close(13) endif allocate(ebarr(nenergy)) allocate(tarr(ntemp)) allocate(ioniz(n_max,nenergy,ntemp,n_bt_amu)) allocate(cx(n_max,m_max,nenergy,ntemp,n_bt_amu)) allocate(excit(n_max,m_max,nenergy,ntemp,n_bt_amu)) ebarr = 0.d0 tarr = 0.d0 ioniz = 0.d0 cx = 0.d0 excit = 0.d0 a(:,1) = [H1_amu, H1_amu] a(:,2) = [H1_amu, H2_amu] a(:,3) = [H2_amu, H1_amu] a(:,4) = [H2_amu, H2_amu] dlogE = (log10(emax) - log10(emin))/(nenergy - 1) do ie=1, nenergy ebarr(ie) = 10.d0**(log10(emin) + (ie-1)*dlogE) enddo dlogT = (log10(tmax) - log10(tmin))/(ntemp - 1) do it=1, ntemp tarr(it) = 10.d0**(log10(tmin) + (it-1)*dlogT) enddo write(*,'(a)') "---- H-H reaction rates settings ----" write(*,'(T2,"Emin = ",e9.2, " keV")') emin write(*,'(T2,"Emax = ",e9.2, " keV")') emax write(*,'(T2,"Nenergy = ", i4)') nenergy write(*,'(T2,"Tmin = ",e9.2, " keV")') tmin write(*,'(T2,"Tmax = ",e9.2, " keV")') tmax write(*,'(T2,"Ntemp = ", i4)') ntemp write(*,*) '' cnt = 0 !$OMP PARALLEL DO private(ie, it, ia, n, m, eb, ti, rate) do ie=1, nenergy eb = ebarr(ie) do it=1, ntemp ti = tarr(it) do ia=1, n_bt_amu do n=1, n_max do m=1, m_max call bt_maxwellian(p_cx_n_m, ti, eb, & a(2,ia), a(1,ia), n, m, rate) cx(n,m,ie,it,ia) = rate if(m.gt.n) then call bt_maxwellian(p_excit_n_m, ti, eb, & a(2,ia), a(1,ia), n, m, rate) excit(n,m,ie,it,ia) = rate call bt_maxwellian(p_excit_n_m, ti, eb, & a(2,ia), a(1,ia), n, m, & rate, deexcit=.True.) excit(m,n,ie,it,ia) = rate endif enddo call bt_maxwellian(p_ioniz_n, ti, eb, & a(2,ia), a(1,ia), n, rate) ioniz(n,ie,it,ia) = rate enddo enddo cnt = cnt + 1 WRITE(*,'(f7.2,"%",a,$)') 100*cnt/real(nenergy*ntemp),char(13) enddo enddo !$OMP END PARALLEL DO call h5gcreate_f(id, "H_H", gid, error) dim1 = [1] dim4 = [n_max, nenergy, ntemp, n_bt_amu] dim5 = [n_max, m_max, nenergy, ntemp, n_bt_amu] call h5ltmake_dataset_int_f(gid, "nenergy", 0, dim1, [nenergy], error) call h5ltmake_dataset_int_f(gid, "ntemp", 0, dim1, [ntemp], error) call h5ltmake_dataset_int_f(gid, "n_bt_amu", 0, dim1, [n_bt_amu], error) call h5ltmake_dataset_int_f(gid, "n_max", 0, dim1, [n_max], error) call h5ltmake_dataset_int_f(gid, "m_max", 0, dim1, [m_max], error) call h5ltmake_dataset_double_f(gid, "dlogE", 0, dim1, [dlogE], error) call h5ltmake_dataset_double_f(gid, "emin", 0, dim1, [emin], error) call h5ltmake_dataset_double_f(gid, "emax", 0, dim1, [emax], error) call h5ltmake_dataset_double_f(gid, "dlogT", 0, dim1, [dlogT], error) call h5ltmake_dataset_double_f(gid, "tmin", 0, dim1, [tmin], error) call h5ltmake_dataset_double_f(gid, "tmax", 0, dim1, [tmax], error) dim2 = [2,n_bt_amu] call h5ltmake_compressed_dataset_double_f(gid, "bt_amu", 2, dim2, a, error) dim1 = [nenergy] call h5ltmake_compressed_dataset_double_f(gid, "energy", 1, dim1, ebarr, error) dim1 = [ntemp] call h5ltmake_compressed_dataset_double_f(gid, "temperature", 1, dim1, tarr, error) call h5ltmake_compressed_dataset_double_f(gid, "cx", 5, dim5, cx, error) call h5ltmake_compressed_dataset_double_f(gid, "ionization", 4, dim4, ioniz, error) call h5ltmake_compressed_dataset_double_f(gid, "excitation", 5, dim5, excit, error) call h5ltset_attribute_string_f(id, "H_H", "description", & "Beam-Target reaction rates for Hydrogen(beam)-Hydrogen(target) interactions", error) call h5ltset_attribute_string_f(gid, "nenergy", "description", & "Number of energy values", error) call h5ltset_attribute_string_f(gid, "ntemp", "description", & "Number of target temperature values", error) call h5ltset_attribute_string_f(gid, "n_bt_amu", "description", & "Number of beam-target amu combinations", error) call h5ltset_attribute_string_f(gid, "n_max", "description", & "Number of initial energy levels", error) call h5ltset_attribute_string_f(gid, "m_max", "description", & "Number of final energy levels", error) call h5ltset_attribute_string_f(gid, "bt_amu", "description", & "Combinations of beam-target amu's e.g. b_amu, t_amu = bt_amu[:,i]", error) call h5ltset_attribute_string_f(gid, "energy", "description", & "Energy values", error) call h5ltset_attribute_string_f(gid, "energy", "units", "keV", error) call h5ltset_attribute_string_f(gid, "dlogE", "description", & "Energy spacing in log-10", error) call h5ltset_attribute_string_f(gid, "dlogE", "units", "log10(keV)", error) call h5ltset_attribute_string_f(gid, "emin","description", & "Minimum energy", error) call h5ltset_attribute_string_f(gid, "emin", "units", "keV", error) call h5ltset_attribute_string_f(gid, "emax","description", & "Maximum energy", error) call h5ltset_attribute_string_f(gid, "emax", "units", "keV", error) call h5ltset_attribute_string_f(gid, "temperature", "description", & "Target temperature values", error) call h5ltset_attribute_string_f(gid, "temperature", "units", "keV", error) call h5ltset_attribute_string_f(gid, "dlogT", "description", & "Temperature spacing in log-10", error) call h5ltset_attribute_string_f(gid, "dlogT", "units", "log10(keV)", error) call h5ltset_attribute_string_f(gid, "tmin","description", & "Minimum temperature", error) call h5ltset_attribute_string_f(gid, "tmin", "units", "keV", error) call h5ltset_attribute_string_f(gid, "tmax","description", & "Maximum temperature", error) call h5ltset_attribute_string_f(gid, "tmax", "units", "keV", error) call h5ltset_attribute_string_f(gid, "cx", "description", & "n/m resolved charge exchange reaction rates: cx(n,m,energy,temp,bt_amu)", error) call h5ltset_attribute_string_f(gid, "cx", "units", "cm^3/s", error) call h5ltset_attribute_string_f(gid, "cx", "reaction", & "H(+) + H(n) -> H(m) + H(+)", error) call h5ltset_attribute_string_f(gid, "excitation", "description", & "n/m resolved (de-)excitation reaction rates: excitation(n,m,energy,temp,bt_amu)", error) call h5ltset_attribute_string_f(gid, "excitation", "units", "cm^3/s", error) call h5ltset_attribute_string_f(gid, "excitation", "reaction", & "H(+) + H(n) -> H(+) + H(m); m > n excitation, m < n de-excitation", error) call h5ltset_attribute_string_f(gid, "ionization", "description", & "n resolved ionization reaction rates: ionization(n,energy,temp,bt_amu)", error) call h5ltset_attribute_string_f(gid, "ionization", "units", "cm^3/s", error) call h5ltset_attribute_string_f(gid, "ionization", "reaction", & "H(+) + H(n) -> H(+) + H(+) + e-", error) call h5gclose_f(gid, error) deallocate(ebarr, tarr, cx, excit, ioniz) end subroutine write_bt_H_H subroutine write_bt_H_e(id, namelist_file, n_max, m_max) !+ Write Hydrogen-Electron reaction rates to a HDF5 file integer(HID_T), intent(inout) :: id !+ HDF5 file or group object id character(len=*), intent(in) :: namelist_file !+ Namelist file that contains settings integer, intent(in) :: n_max !+ Number of initial atomic energy states to calculate integer, intent(in) :: m_max !+ Number of final atomic energy states to calculate real(Float64) :: emin real(Float64) :: emax integer :: nenergy real(Float64) :: tmin real(Float64) :: tmax integer :: ntemp real(Float64) :: eb real(Float64) :: dlogE real(Float64), dimension(:), allocatable :: ebarr real(Float64) :: ti real(Float64) :: dlogT real(Float64), dimension(:), allocatable :: tarr real(Float64), dimension(:,:,:,:), allocatable :: ioniz real(Float64), dimension(:,:,:,:,:), allocatable :: excit integer(HID_T) :: gid integer(HSIZE_T), dimension(1) :: dim1 integer(HSIZE_T), dimension(2) :: dim2 integer(HSIZE_T), dimension(3) :: dim3 integer(HSIZE_T), dimension(4) :: dim4 integer(HSIZE_T), dimension(5) :: dim5 integer :: ie, it, ia, n, m, error, cnt real(Float64) :: rate integer, parameter :: n_bt_amu = 2 real(Float64), dimension(2,n_bt_amu) :: a logical :: exis NAMELIST /H_e_rates/ nenergy, emin, emax, ntemp, tmin, tmax nenergy = 100; emin = 1.d-3 ; emax = 4.d2 ntemp = 100; tmin = 1.d-3 ; tmax = 2.d1 inquire(file=namelist_file,exist=exis) if(.not.exis) then write(*,'(a,a)') 'WRITE_BT_H_E: Input file does not exist: ',trim(namelist_file) write(*,'(a)') 'Continuing with default settings...' else open(13,file=namelist_file) read(13,NML=H_e_rates) close(13) endif allocate(ebarr(nenergy)) allocate(tarr(ntemp)) allocate(ioniz(n_max,nenergy,ntemp,n_bt_amu)) allocate(excit(n_max,m_max,nenergy,ntemp,n_bt_amu)) ebarr = 0.d0 ioniz = 0.d0 excit = 0.d0 a(:,1) = [H1_amu, e_amu] a(:,2) = [H2_amu, e_amu] dlogE = (log10(emax) - log10(emin))/(nenergy - 1) do ie=1, nenergy ebarr(ie) = 10.d0**(log10(emin) + (ie-1)*dlogE) enddo dlogT = (log10(tmax) - log10(tmin))/(ntemp - 1) do it=1, ntemp tarr(it) = 10.d0**(log10(tmin) + (it-1)*dlogT) enddo write(*,'(a)') "---- H-e reaction rates settings ----" write(*,'(T2,"Emin = ",e9.2, " keV")') emin write(*,'(T2,"Emax = ",e9.2, " keV")') emax write(*,'(T2,"Nenergy = ", i4)') nenergy write(*,'(T2,"Tmin = ",e9.2, " keV")') tmin write(*,'(T2,"Tmax = ",e9.2, " keV")') tmax write(*,'(T2,"Ntemp = ", i4)') ntemp write(*,*) '' cnt = 0 !$OMP PARALLEL DO private(ie, it, ia, n, m, eb, ti, rate) do ie=1, nenergy eb = ebarr(ie) do it=1, ntemp ti = tarr(it) do ia=1, n_bt_amu do n=1, n_max do m=1, m_max if(m.gt.n) then call bt_maxwellian(e_excit_n_m, ti, eb, & a(2,ia), a(1,ia), n, m, rate) excit(n,m,ie,it,ia) = rate call bt_maxwellian(e_excit_n_m, ti, eb, & a(2,ia), a(1,ia), n, m, & rate, deexcit=.True.) excit(m,n,ie,it,ia) = rate endif enddo call bt_maxwellian(e_ioniz_n, ti, eb, & a(2,ia), a(1,ia), n, rate) ioniz(n,ie,it,ia) = rate enddo enddo cnt = cnt + 1 WRITE(*,'(f7.2,"%",a,$)') 100*cnt/real(nenergy*ntemp),char(13) enddo enddo !$OMP END PARALLEL DO call h5gcreate_f(id, "H_e", gid, error) dim1 = [1] dim4 = [n_max, nenergy, ntemp, n_bt_amu] dim5 = [n_max, m_max, nenergy, ntemp, n_bt_amu] call h5ltmake_dataset_int_f(gid, "nenergy", 0, dim1, [nenergy], error) call h5ltmake_dataset_int_f(gid, "ntemp", 0, dim1, [ntemp], error) call h5ltmake_dataset_int_f(gid, "n_bt_amu", 0, dim1, [n_bt_amu], error) call h5ltmake_dataset_int_f(gid, "n_max", 0, dim1, [n_max], error) call h5ltmake_dataset_int_f(gid, "m_max", 0, dim1, [m_max], error) call h5ltmake_dataset_double_f(gid, "dlogE", 0, dim1, [dlogE], error) call h5ltmake_dataset_double_f(gid, "emin", 0, dim1, [emin], error) call h5ltmake_dataset_double_f(gid, "emax", 0, dim1, [emax], error) call h5ltmake_dataset_double_f(gid, "dlogT", 0, dim1, [dlogT], error) call h5ltmake_dataset_double_f(gid, "tmin", 0, dim1, [tmin], error) call h5ltmake_dataset_double_f(gid, "tmax", 0, dim1, [tmax], error) dim2 = [2,n_bt_amu] call h5ltmake_compressed_dataset_double_f(gid, "bt_amu", 2, dim2, a, error) dim1 = [nenergy] call h5ltmake_compressed_dataset_double_f(gid, "energy", 1, dim1, ebarr, error) dim1 = [ntemp] call h5ltmake_compressed_dataset_double_f(gid, "temperature", 1, dim1, tarr, error) call h5ltmake_compressed_dataset_double_f(gid, "ionization", 4, dim4, ioniz, error) call h5ltmake_compressed_dataset_double_f(gid, "excitation", 5, dim5, excit, error) call h5ltset_attribute_string_f(id, "H_e", "description", & "Beam-Target reaction rates for Hydrogen(beam)-Electron(target) interactions", error) call h5ltset_attribute_string_f(gid, "nenergy", "description", & "Number of energy values", error) call h5ltset_attribute_string_f(gid, "ntemp", "description", & "Number of target temperature values", error) call h5ltset_attribute_string_f(gid, "n_bt_amu", "description", & "Number of beam-target amu combinations", error) call h5ltset_attribute_string_f(gid, "n_max", "description", & "Number of initial energy levels", error) call h5ltset_attribute_string_f(gid, "m_max", "description", & "Number of final energy levels", error) call h5ltset_attribute_string_f(gid, "bt_amu", "description", & "Combinations of beam-target amu's e.g. b_amu, t_amu = bt_amu[:,i]", error) call h5ltset_attribute_string_f(gid, "energy", "description", & "Energy values", error) call h5ltset_attribute_string_f(gid, "energy", "units", "keV", error) call h5ltset_attribute_string_f(gid, "dlogE", "description", & "Energy spacing in log-10", error) call h5ltset_attribute_string_f(gid, "dlogE", "units", "log10(keV)", error) call h5ltset_attribute_string_f(gid, "emin","description", & "Minimum energy", error) call h5ltset_attribute_string_f(gid, "emin", "units", "keV", error) call h5ltset_attribute_string_f(gid, "emax","description", & "Maximum energy", error) call h5ltset_attribute_string_f(gid, "emax", "units", "keV", error) call h5ltset_attribute_string_f(gid, "temperature", "description", & "Target temperature values", error) call h5ltset_attribute_string_f(gid, "temperature", "units", "keV", error) call h5ltset_attribute_string_f(gid, "dlogT", "description", & "Temperature spacing in log-10", error) call h5ltset_attribute_string_f(gid, "dlogT", "units", "log10(keV)", error) call h5ltset_attribute_string_f(gid, "tmin","description", & "Minimum temperature", error) call h5ltset_attribute_string_f(gid, "tmin", "units", "keV", error) call h5ltset_attribute_string_f(gid, "tmax","description", & "Maximum temperature", error) call h5ltset_attribute_string_f(gid, "tmax", "units", "keV", error) call h5ltset_attribute_string_f(gid, "excitation", "description", & "n/m resolved (de-)excitation reaction rates: excitation(n,m,energy,temp,bt_amu)", error) call h5ltset_attribute_string_f(gid, "excitation", "units", "cm^3/s", error) call h5ltset_attribute_string_f(gid, "excitation", "reaction", & "e- + H(n) -> e- + H(m); m > n excitation, m < n de-excitation", error) call h5ltset_attribute_string_f(gid, "ionization", "description", & "n resolved ionization reaction rates: ionization(n,energy,temp,bt_amu)", error) call h5ltset_attribute_string_f(gid, "ionization", "units", "cm^3/s", error) call h5ltset_attribute_string_f(gid, "ionization", "reaction", & "e- + H(n) -> e- + H(+) + e-", error) call h5gclose_f(gid, error) deallocate(ebarr, tarr, excit, ioniz) end subroutine write_bt_H_e subroutine write_bt_H_Aq(id, namelist_file, n_max, m_max) !+ Write Hydrogen-Impurity reaction rates to a HDF5 file integer(HID_T), intent(inout) :: id !+ HDF5 file or group object id character(len=*), intent(in) :: namelist_file !+ Namelist file that contains settings integer, intent(in) :: n_max !+ Number of initial atomic energy states to calculate integer, intent(in) :: m_max !+ Number of final atomic energy states to calculate integer :: q real(Float64) :: mass real(Float64) :: emin real(Float64) :: emax integer :: nenergy real(Float64) :: tmin real(Float64) :: tmax integer :: ntemp real(Float64) :: eb real(Float64) :: dlogE real(Float64), dimension(:), allocatable :: ebarr real(Float64) :: ti real(Float64) :: dlogT real(Float64), dimension(:), allocatable :: tarr real(Float64), dimension(:,:,:,:), allocatable :: ioniz, cx real(Float64), dimension(:,:,:,:,:), allocatable :: excit integer(HID_T) :: gid integer(HSIZE_T), dimension(1) :: dim1 integer(HSIZE_T), dimension(2) :: dim2 integer(HSIZE_T), dimension(3) :: dim3 integer(HSIZE_T), dimension(4) :: dim4 integer(HSIZE_T), dimension(5) :: dim5 integer :: ie, it, ia, n, m, error, cnt real(Float64) :: rate integer, parameter :: n_bt_amu = 2 real(Float64), dimension(2,n_bt_amu) :: a character(len=10) :: aname character(len=5) :: asym logical :: exis NAMELIST /H_Aq_rates/ q, mass, nenergy, emin, emax, ntemp, tmin, tmax q = 6 ; mass = C_amu nenergy = 100; emin = 1.d-3 ; emax = 4.d2 ntemp = 100; tmin = 1.d-3 ; tmax = 2.d1 inquire(file=namelist_file,exist=exis) if(.not.exis) then write(*,'(a,a)') 'WRITE_BT_H_Aq: Input file does not exist: ',trim(namelist_file) write(*,'(a)') 'Continuing with default settings...' else open(13,file=namelist_file) read(13,NML=H_Aq_rates) close(13) endif allocate(ebarr(nenergy)) allocate(tarr(ntemp)) allocate(ioniz(n_max,nenergy,ntemp,n_bt_amu)) allocate(cx(n_max,nenergy,ntemp,n_bt_amu)) allocate(excit(n_max,m_max,nenergy,ntemp,n_bt_amu)) select case (q) case (5) aname = "Boron" asym = "H_B5" case (6) aname = "Carbon" asym = "H_C6" case DEFAULT aname = "Impurity" asym = "H_Aq" end select ebarr = 0.d0 ioniz = 0.d0 cx = 0.d0 excit = 0.d0 a(:,1) = [H1_amu, mass] a(:,2) = [H2_amu, mass] dlogE = (log10(emax) - log10(emin))/(nenergy - 1) do ie=1, nenergy ebarr(ie) = 10.d0**(log10(emin) + (ie-1)*dlogE) enddo dlogT = (log10(tmax) - log10(tmin))/(ntemp - 1) do it=1, ntemp tarr(it) = 10.d0**(log10(tmin) + (it-1)*dlogT) enddo write(*,'(a)') "---- H-"//trim(adjustl(aname))//" reaction rates settings ----" write(*,'(T2,"q = ", i2)') q write(*,'(T2,"mass = ",f7.2, " amu")') mass write(*,'(T2,"Emin = ",e9.2, " keV")') emin write(*,'(T2,"Emax = ",e9.2, " keV")') emax write(*,'(T2,"Nenergy = ", i4)') nenergy write(*,'(T2,"Tmin = ",e9.2, " keV")') tmin write(*,'(T2,"Tmax = ",e9.2, " keV")') tmax write(*,'(T2,"Ntemp = ", i4)') ntemp write(*,*) '' cnt = 0 !$OMP PARALLEL DO private(ie, it, ia, n, m, eb, ti, rate) do ie=1, nenergy eb = ebarr(ie) do it=1, ntemp ti = tarr(it) do ia=1, n_bt_amu do n=1, n_max do m=1, m_max if(m.gt.n) then call bt_maxwellian(Aq_excit_n_m, q, ti, eb, & a(2,ia), a(1,ia), n, m, rate) excit(n,m,ie,it,ia) = rate call bt_maxwellian(Aq_excit_n_m, q, ti, eb, & a(2,ia), a(1,ia), n, m, & rate, deexcit=.True.) excit(m,n,ie,it,ia) = rate endif enddo call bt_maxwellian(Aq_cx_n, q, ti, eb, & a(2,ia), a(1,ia), n, rate) cx(n,ie,it,ia) = rate call bt_maxwellian(Aq_ioniz_n, q, ti, eb, & a(2,ia), a(1,ia), n, rate) ioniz(n,ie,it,ia) = rate enddo enddo cnt = cnt + 1 WRITE(*,'(f7.2,"%",a,$)') 100*cnt/real(nenergy*ntemp),char(13) enddo enddo !$OMP END PARALLEL DO call h5gcreate_f(id, trim(adjustl(asym)), gid, error) dim1 = [1] dim4 = [n_max, nenergy, ntemp, n_bt_amu] dim5 = [n_max, m_max, nenergy, ntemp, n_bt_amu] call h5ltmake_dataset_int_f(gid, "nenergy", 0, dim1, [nenergy], error) call h5ltmake_dataset_int_f(gid, "ntemp", 0, dim1, [ntemp], error) call h5ltmake_dataset_int_f(gid, "n_bt_amu", 0, dim1, [n_bt_amu], error) call h5ltmake_dataset_int_f(gid, "n_max", 0, dim1, [n_max], error) call h5ltmake_dataset_int_f(gid, "m_max", 0, dim1, [m_max], error) call h5ltmake_dataset_double_f(gid, "dlogE", 0, dim1, [dlogE], error) call h5ltmake_dataset_double_f(gid, "emin", 0, dim1, [emin], error) call h5ltmake_dataset_double_f(gid, "emax", 0, dim1, [emax], error) call h5ltmake_dataset_double_f(gid, "dlogT", 0, dim1, [dlogT], error) call h5ltmake_dataset_double_f(gid, "tmin", 0, dim1, [tmin], error) call h5ltmake_dataset_double_f(gid, "tmax", 0, dim1, [tmax], error) dim2 = [2,n_bt_amu] call h5ltmake_compressed_dataset_double_f(gid, "bt_amu", 2, dim2, a, error) dim1 = [nenergy] call h5ltmake_compressed_dataset_double_f(gid, "energy", 1, dim1, ebarr, error) dim1 = [ntemp] call h5ltmake_compressed_dataset_double_f(gid, "temperature", 1, dim1, tarr, error) call h5ltmake_compressed_dataset_double_f(gid, "cx", 4, dim4, cx, error) call h5ltmake_compressed_dataset_double_f(gid, "ionization", 4, dim4, ioniz, error) call h5ltmake_compressed_dataset_double_f(gid, "excitation", 5, dim5, excit, error) call h5ltset_attribute_string_f(id, trim(adjustl(asym)), "description", & "Beam-Target reaction rates for Hydrogen(beam)-"//trim(adjustl(aname))// & "(target) interactions", error) call h5ltset_attribute_string_f(gid, "nenergy", "description", & "Number of energy values", error) call h5ltset_attribute_string_f(gid, "ntemp", "description", & "Number of target temperature values", error) call h5ltset_attribute_string_f(gid, "n_bt_amu", "description", & "Number of beam-target amu combinations", error) call h5ltset_attribute_string_f(gid, "n_max", "description", & "Number of initial energy levels", error) call h5ltset_attribute_string_f(gid, "m_max", "description", & "Number of final energy levels", error) call h5ltset_attribute_string_f(gid, "bt_amu", "description", & "Combinations of beam-target amu's e.g. b_amu, t_amu = bt_amu[:,i]", error) call h5ltset_attribute_string_f(gid, "energy", "description", & "Energy values", error) call h5ltset_attribute_string_f(gid, "energy", "units", "keV", error) call h5ltset_attribute_string_f(gid, "dlogE", "description", & "Energy spacing in log-10", error) call h5ltset_attribute_string_f(gid, "dlogE", "units", "log10(keV)", error) call h5ltset_attribute_string_f(gid, "emin","description", & "Minimum energy", error) call h5ltset_attribute_string_f(gid, "emin", "units", "keV", error) call h5ltset_attribute_string_f(gid, "emax","description", & "Maximum energy", error) call h5ltset_attribute_string_f(gid, "emax", "units", "keV", error) call h5ltset_attribute_string_f(gid, "temperature", "description", & "Target temperature values", error) call h5ltset_attribute_string_f(gid, "temperature", "units", "keV", error) call h5ltset_attribute_string_f(gid, "dlogT", "description", & "Temperature spacing in log-10", error) call h5ltset_attribute_string_f(gid, "dlogT", "units", "log10(keV)", error) call h5ltset_attribute_string_f(gid, "tmin","description", & "Minimum temperature", error) call h5ltset_attribute_string_f(gid, "tmin", "units", "keV", error) call h5ltset_attribute_string_f(gid, "tmax","description", & "Maximum temperature", error) call h5ltset_attribute_string_f(gid, "tmax", "units", "keV", error) call h5ltset_attribute_string_f(gid, "cx", "description", & "n-resolved charge exchange reaction rates: cx(n,energy,temp,bt_amu)", error) call h5ltset_attribute_string_f(gid, "cx", "units", "cm^3/s", error) call h5ltset_attribute_string_f(gid, "cx", "reaction", & "A(q+) + H(n) -> A((q-1)+) + H(+)", error) call h5ltset_attribute_string_f(gid, "excitation", "description", & "n/m resolved (de-)excitation reaction rates: excitation(n,m,energy,temp,bt_amu)", error) call h5ltset_attribute_string_f(gid, "excitation", "units", "cm^3/s", error) call h5ltset_attribute_string_f(gid, "excitation", "reaction", & "A(q+) + H(n) -> A(q+) + H(m); m > n excitation, m < n de-excitation", error) call h5ltset_attribute_string_f(gid, "ionization", "description", & "n resolved ionization reaction rates: ionization(n,energy,temp,bt_amu)", error) call h5ltset_attribute_string_f(gid, "ionization", "units", "cm^3/s", error) call h5ltset_attribute_string_f(gid, "ionization", "reaction", & "A(q+) + H(n) -> A(q+) + H(+) + e-", error) call h5gclose_f(gid, error) deallocate(ebarr, tarr, excit, ioniz) end subroutine write_bt_H_Aq subroutine write_bt_D_D(id, namelist_file) !+ Write Deuterium-Deuterium reaction rates to a HDF5 file integer(HID_T), intent(inout) :: id !+ HDF5 file or group object id character(len=*), intent(in) :: namelist_file !+ Namelist file that contains settings integer :: nbranch = 2 real(Float64), dimension(2) :: bt_amu = [H2_amu, H2_amu] real(Float64) :: emin real(Float64) :: emax integer :: nenergy real(Float64) :: tmin real(Float64) :: tmax integer :: ntemp real(Float64) :: eb real(Float64) :: dlogE real(Float64), dimension(:), allocatable :: ebarr real(Float64) :: ti real(Float64) :: dlogT real(Float64), dimension(:), allocatable :: tarr real(Float64), dimension(:,:,:), allocatable :: fusion integer(HID_T) :: gid integer(HSIZE_T), dimension(1) :: dim1 integer(HSIZE_T), dimension(3) :: dim3 integer :: ie, it, error, cnt real(Float64) :: rate_a, rate_b logical :: exis NAMELIST /D_D_rates/ nenergy, emin, emax, ntemp, tmin, tmax nenergy = 100; emin = 1.d-3 ; emax = 4.d2 ntemp = 100; tmin = 1.d-3 ; tmax = 2.d1 inquire(file=namelist_file,exist=exis) if(.not.exis) then write(*,'(a,a)') 'WRITE_BT_D_D: Input file does not exist: ',trim(namelist_file) write(*,'(a)') 'Continuing with default settings...' else open(13,file=namelist_file) read(13,NML=D_D_rates) close(13) endif allocate(ebarr(nenergy)) allocate(tarr(ntemp)) allocate(fusion(nenergy,ntemp,nbranch)) ebarr = 0.d0 tarr = 0.d0 fusion = 0.d0 dlogE = (log10(emax) - log10(emin))/(nenergy - 1) do ie=1, nenergy ebarr(ie) = 10.d0**(log10(emin) + (ie-1)*dlogE) enddo dlogT = (log10(tmax) - log10(tmin))/(ntemp - 1) do it=1, ntemp tarr(it) = 10.d0**(log10(tmin) + (it-1)*dlogT) enddo write(*,'(a)') "---- D-D reaction rates settings ----" write(*,'(T2,"Emin = ",e9.2, " keV")') emin write(*,'(T2,"Emax = ",e9.2, " keV")') emax write(*,'(T2,"Nenergy = ", i4)') nenergy write(*,'(T2,"Tmin = ",e9.2, " keV")') tmin write(*,'(T2,"Tmax = ",e9.2, " keV")') tmax write(*,'(T2,"Ntemp = ", i4)') ntemp write(*,*) '' cnt = 0 !$OMP PARALLEL DO private(ie, it, eb, ti, rate_a, rate_b) do ie=1, nenergy eb = ebarr(ie) do it=1, ntemp ti = tarr(it) call bt_maxwellian(d_d_fusion_t, ti, eb, bt_amu(1), bt_amu(2), rate_a) call bt_maxwellian(d_d_fusion_he, ti, eb, bt_amu(2), bt_amu(2), rate_b) fusion(ie,it,1) = rate_a fusion(ie,it,2) = rate_b cnt = cnt + 1 WRITE(*,'(f7.2,"%",a,$)') 100*cnt/real(nenergy*ntemp),char(13) enddo enddo !$OMP END PARALLEL DO call h5gcreate_f(id, "D_D", gid, error) dim1 = [1] call h5ltmake_dataset_int_f(gid, "nbranch", 0, dim1, [nbranch], error) call h5ltmake_dataset_int_f(gid, "nenergy", 0, dim1, [nenergy], error) call h5ltmake_dataset_int_f(gid, "ntemp", 0, dim1, [ntemp], error) call h5ltmake_dataset_double_f(gid, "dlogE", 0, dim1, [dlogE], error) call h5ltmake_dataset_double_f(gid, "emin", 0, dim1, [emin], error) call h5ltmake_dataset_double_f(gid, "emax", 0, dim1, [emax], error) call h5ltmake_dataset_double_f(gid, "dlogT", 0, dim1, [dlogT], error) call h5ltmake_dataset_double_f(gid, "tmin", 0, dim1, [tmin], error) call h5ltmake_dataset_double_f(gid, "tmax", 0, dim1, [tmax], error) dim1 = [2] call h5ltmake_compressed_dataset_double_f(gid, "bt_amu", 1, dim1, bt_amu, error) dim1 = [nenergy] call h5ltmake_compressed_dataset_double_f(gid, "energy", 1, dim1, ebarr, error) dim1 = [ntemp] call h5ltmake_compressed_dataset_double_f(gid, "temperature", 1, dim1, tarr, error) dim3 = [nenergy, ntemp, nbranch] call h5ltmake_compressed_dataset_double_f(gid, "fusion", 3, dim3, fusion, error) call h5ltset_attribute_string_f(id, "D_D", "description", & "Beam-Target reaction rates for Deuterium(beam)-Deuterium(target) interactions", error) call h5ltset_attribute_string_f(gid, "nbranch", "description", & "Number of reaction branches", error) call h5ltset_attribute_string_f(gid, "nenergy", "description", & "Number of energy values", error) call h5ltset_attribute_string_f(gid, "ntemp", "description", & "Number of target temperature values", error) call h5ltset_attribute_string_f(gid, "energy", "description", & "Energy values", error) call h5ltset_attribute_string_f(gid, "energy", "units", "keV", error) call h5ltset_attribute_string_f(gid, "dlogE", "description", & "Energy spacing in log-10", error) call h5ltset_attribute_string_f(gid, "dlogE", "units", "log10(keV)", error) call h5ltset_attribute_string_f(gid, "emin","description", & "Minimum energy", error) call h5ltset_attribute_string_f(gid, "emin", "units", "keV", error) call h5ltset_attribute_string_f(gid, "emax","description", & "Maximum energy", error) call h5ltset_attribute_string_f(gid, "emax", "units", "keV", error) call h5ltset_attribute_string_f(gid, "temperature", "description", & "Target temperature values", error) call h5ltset_attribute_string_f(gid, "temperature", "units", "keV", error) call h5ltset_attribute_string_f(gid, "dlogT", "description", & "Temperature spacing in log-10", error) call h5ltset_attribute_string_f(gid, "dlogT", "units", "log10(keV)", error) call h5ltset_attribute_string_f(gid, "tmin","description", & "Minimum temperature", error) call h5ltset_attribute_string_f(gid, "tmin", "units", "keV", error) call h5ltset_attribute_string_f(gid, "tmax","description", & "Maximum temperature", error) call h5ltset_attribute_string_f(gid, "tmax", "units", "keV", error) call h5ltset_attribute_string_f(gid, "bt_amu", "description", & "Isotope mass of the beam and target species respectively", error) call h5ltset_attribute_string_f(gid, "bt_amu", "units", "amu", error) call h5ltset_attribute_string_f(gid, "fusion", "description", & "Beam-Target reaction rates for T/He3 branches of D-D nuclear reactions: fusion(energy, temp, branch)", error) call h5ltset_attribute_string_f(gid, "fusion", "units", "cm^3/s", error) call h5ltset_attribute_string_f(gid, "fusion", "reaction", & "D + D -> [1] T(1.01 MeV) + p(3.02 MeV) (50%); [2] He3(0.82 MeV) + n(2.45 MeV) (50%)", error) call h5gclose_f(gid, error) deallocate(ebarr, tarr, fusion) end subroutine write_bt_D_D subroutine write_bt_D_T(id, namelist_file) !+ Write Deuterium-Tritium reaction rates to a HDF5 file integer(HID_T), intent(inout) :: id !+ HDF5 file or group object id character(len=*), intent(in) :: namelist_file !+ Namelist file that contains settings integer :: nbranch = 1 real(Float64), dimension(2) :: bt_amu = [H2_amu, H3_amu] real(Float64) :: emin real(Float64) :: emax integer :: nenergy real(Float64) :: tmin real(Float64) :: tmax integer :: ntemp real(Float64) :: eb real(Float64) :: dlogE real(Float64), dimension(:), allocatable :: ebarr real(Float64) :: ti real(Float64) :: dlogT real(Float64), dimension(:), allocatable :: tarr real(Float64), dimension(:,:,:), allocatable :: fusion integer(HID_T) :: gid integer(HSIZE_T), dimension(1) :: dim1 integer(HSIZE_T), dimension(3) :: dim3 integer :: ie, it, error, cnt real(Float64) :: rate logical :: exis NAMELIST /D_T_rates/ nenergy, emin, emax, ntemp, tmin, tmax nenergy = 100; emin = 1.d-3 ; emax = 4.d2 ntemp = 100; tmin = 1.d-3 ; tmax = 2.d1 inquire(file=namelist_file,exist=exis) if(.not.exis) then write(*,'(a,a)') 'WRITE_BT_D_T: Input file does not exist: ',trim(namelist_file) write(*,'(a)') 'Continuing with default settings...' else open(13,file=namelist_file) read(13,NML=D_T_rates) close(13) endif allocate(ebarr(nenergy)) allocate(tarr(ntemp)) allocate(fusion(nenergy,ntemp,nbranch)) ebarr = 0.d0 tarr = 0.d0 fusion = 0.d0 dlogE = (log10(emax) - log10(emin))/(nenergy - 1) do ie=1, nenergy ebarr(ie) = 10.d0**(log10(emin) + (ie-1)*dlogE) enddo dlogT = (log10(tmax) - log10(tmin))/(ntemp - 1) do it=1, ntemp tarr(it) = 10.d0**(log10(tmin) + (it-1)*dlogT) enddo write(*,'(a)') "---- D-T reaction rates settings ----" write(*,'(T2,"Emin = ",e9.2, " keV")') emin write(*,'(T2,"Emax = ",e9.2, " keV")') emax write(*,'(T2,"Nenergy = ", i4)') nenergy write(*,'(T2,"Tmin = ",e9.2, " keV")') tmin write(*,'(T2,"Tmax = ",e9.2, " keV")') tmax write(*,'(T2,"Ntemp = ", i4)') ntemp write(*,*) '' cnt = 0 !$OMP PARALLEL DO private(ie, it, eb, ti, rate) do ie=1, nenergy eb = ebarr(ie) do it=1, ntemp ti = tarr(it) call bt_maxwellian(d_t_fusion, ti, eb, bt_amu(1), bt_amu(2), rate) fusion(ie,it,1) = rate cnt = cnt + 1 WRITE(*,'(f7.2,"%",a,$)') 100*cnt/real(nenergy*ntemp),char(13) enddo enddo !$OMP END PARALLEL DO call h5gcreate_f(id, "D_T", gid, error) dim1 = [1] call h5ltmake_dataset_int_f(gid, "nbranch", 0, dim1, [nbranch], error) call h5ltmake_dataset_int_f(gid, "nenergy", 0, dim1, [nenergy], error) call h5ltmake_dataset_int_f(gid, "ntemp", 0, dim1, [ntemp], error) call h5ltmake_dataset_double_f(gid, "dlogE", 0, dim1, [dlogE], error) call h5ltmake_dataset_double_f(gid, "emin", 0, dim1, [emin], error) call h5ltmake_dataset_double_f(gid, "emax", 0, dim1, [emax], error) call h5ltmake_dataset_double_f(gid, "dlogT", 0, dim1, [dlogT], error) call h5ltmake_dataset_double_f(gid, "tmin", 0, dim1, [tmin], error) call h5ltmake_dataset_double_f(gid, "tmax", 0, dim1, [tmax], error) dim1 = [2] call h5ltmake_compressed_dataset_double_f(gid, "bt_amu", 1, dim1, bt_amu, error) dim1 = [nenergy] call h5ltmake_compressed_dataset_double_f(gid, "energy", 1, dim1, ebarr, error) dim1 = [ntemp] call h5ltmake_compressed_dataset_double_f(gid, "temperature", 1, dim1, tarr, error) dim3 = [nenergy, ntemp, nbranch] call h5ltmake_compressed_dataset_double_f(gid, "fusion", 3, dim3, fusion, error) call h5ltset_attribute_string_f(id, "D_T", "description", & "Beam-Target reaction rates for Deuterium(beam)-Tritium(target) interactions", error) call h5ltset_attribute_string_f(gid, "nbranch", "description", & "Number of reaction branches", error) call h5ltset_attribute_string_f(gid, "nenergy", "description", & "Number of energy values", error) call h5ltset_attribute_string_f(gid, "ntemp", "description", & "Number of target temperature values", error) call h5ltset_attribute_string_f(gid, "energy", "description", & "Energy values", error) call h5ltset_attribute_string_f(gid, "energy", "units", "keV", error) call h5ltset_attribute_string_f(gid, "dlogE", "description", & "Energy spacing in log-10", error) call h5ltset_attribute_string_f(gid, "dlogE", "units", "log10(keV)", error) call h5ltset_attribute_string_f(gid, "emin","description", & "Minimum energy", error) call h5ltset_attribute_string_f(gid, "emin", "units", "keV", error) call h5ltset_attribute_string_f(gid, "emax","description", & "Maximum energy", error) call h5ltset_attribute_string_f(gid, "emax", "units", "keV", error) call h5ltset_attribute_string_f(gid, "temperature", "description", & "Target temperature values", error) call h5ltset_attribute_string_f(gid, "temperature", "units", "keV", error) call h5ltset_attribute_string_f(gid, "dlogT", "description", & "Temperature spacing in log-10", error) call h5ltset_attribute_string_f(gid, "dlogT", "units", "log10(keV)", error) call h5ltset_attribute_string_f(gid, "tmin","description", & "Minimum temperature", error) call h5ltset_attribute_string_f(gid, "tmin", "units", "keV", error) call h5ltset_attribute_string_f(gid, "tmax","description", & "Maximum temperature", error) call h5ltset_attribute_string_f(gid, "tmax", "units", "keV", error) call h5ltset_attribute_string_f(gid, "bt_amu", "description", & "Isotope mass of the beam and target species respectively", error) call h5ltset_attribute_string_f(gid, "bt_amu", "units", "amu", error) call h5ltset_attribute_string_f(gid, "fusion", "description", & "Beam-Target reaction rates for D-T nuclear reactions: fusion(energy, temperature, branch)", error) call h5ltset_attribute_string_f(gid, "fusion", "units", "cm^3/s", error) call h5ltset_attribute_string_f(gid, "fusion", "reaction", & "D + T -> He4(3.5 MeV) + n(14.1 MeV)", error) call h5gclose_f(gid, error) deallocate(ebarr, tarr, fusion) end subroutine write_bt_D_T subroutine print_default_namelist !+ Prints out the default settings as a namelist write(*,'(a)') "!Default Atomic Table Settings" write(*,'(a)') "&general_settings" write(*,'(a)') "n_max = 12, !Number of initial atomic energy levels" write(*,'(a)') "m_max = 12, !Number of final atomic energy levels" write(*,'(a)') "tables_file = './atomic_tables.h5'" write(*,'(a)') "/" write(*,'(a)') "!Hydrogen-Hydrogen Cross Sections" write(*,'(a)') "&H_H_cross" write(*,'(a)') "nenergy = 200, !Number of energy values" write(*,'(a)') "emin = 1.0E-3, !Minimum energy [keV]" write(*,'(a)') "emax = 8.0E2 !Maximum energy [keV]" write(*,'(a)') "/" write(*,'(a)') "!Hydrogen-Electron Cross Sections" write(*,'(a)') "&H_e_cross" write(*,'(a)') "nenergy = 200, !Number of energy values" write(*,'(a)') "emin = 1.0E-3, !Minimum energy [keV]" write(*,'(a)') "emax = 8.0E2 !Maximum energy [keV]" write(*,'(a)') "/" write(*,'(a)') "!Hydrogen-Impurity Cross Sections" write(*,'(a)') "&H_Aq_cross" write(*,'(a)') "q = 6, !Impurity charge: Boron: 5, Carbon: 6, ..." write(*,'(a)') "nenergy = 200, !Number of energy values" write(*,'(a)') "emin = 1.0E-3, !Minimum energy [keV]" write(*,'(a)') "emax = 8.0E2 !Maximum energy [keV]" write(*,'(a)') "/" write(*,'(a)') "!Deuterium-Deuterium Nuclear Cross Sections" write(*,'(a)') "&D_D_cross" write(*,'(a)') "nenergy = 200, !Number of energy values" write(*,'(a)') "emin = 1.0E-3, !Minimum energy [keV]" write(*,'(a)') "emax = 8.0E2 !Maximum energy [keV]" write(*,'(a)') "/" write(*,'(a)') "!Hydrogen-Hydrogen Reaction Rates" write(*,'(a)') "&H_H_rates" write(*,'(a)') "nenergy = 100, !Number of energy values" write(*,'(a)') "emin = 1.0E-3, !Minimum energy [keV]" write(*,'(a)') "emax = 4.0E2, !Maximum energy [keV]" write(*,'(a)') "ntemp = 100, !Number of temperature values" write(*,'(a)') "tmin = 1.0E-3, !Minimum ion temperature [keV]" write(*,'(a)') "tmax = 2.0E1 !Maximum ion temperature [keV]" write(*,'(a)') "/" write(*,'(a)') "!Hydrogen-Electron Reaction Rates" write(*,'(a)') "&H_e_rates" write(*,'(a)') "nenergy = 100, !Number of energy values" write(*,'(a)') "emin = 1.0E-3, !Minimum energy [keV]" write(*,'(a)') "emax = 4.0E2, !Maximum energy [keV]" write(*,'(a)') "ntemp = 100, !Number of temperature values" write(*,'(a)') "tmin = 1.0E-3, !Minimum electron temperature [keV]" write(*,'(a)') "tmax = 2.0E1 !Maximum electron temperature [keV]" write(*,'(a)') "/" write(*,'(a)') "!Hydrogen-Impurity Reaction Rates" write(*,'(a)') "&H_Aq_rates" write(*,'(a)') "q = 6, !Impurity charge: Boron: 5, Carbon: 6, ..." write(*,'(a)') "mass = 12.011, !Impurity mass [amu]" write(*,'(a)') "nenergy = 100, !Number of energy values" write(*,'(a)') "emin = 1.0E-3, !Minimum energy [keV]" write(*,'(a)') "emax = 4.0E2, !Maximum energy [keV]" write(*,'(a)') "ntemp = 100, !Number of temperature values" write(*,'(a)') "tmin = 1.0E-3, !Minimum ion temperature [keV]" write(*,'(a)') "tmax = 2.0E1 !Maximum ion temperature [keV]" write(*,'(a)') "/" write(*,'(a)') "!Deuterium-Deuterium Nuclear Reaction Rates" write(*,'(a)') "&D_D_rates" write(*,'(a)') "nenergy = 100, !Number of energy values" write(*,'(a)') "emin = 1.0E-3, !Minimum energy [keV]" write(*,'(a)') "emax = 4.0E2, !Maximum energy [keV]" write(*,'(a)') "ntemp = 100, !Number of temperature values" write(*,'(a)') "tmin = 1.0E-3, !Minimum deuterium temperature [keV]" write(*,'(a)') "tmax = 2.0E1 !Maximum deuterium temperature [keV]" write(*,'(a)') "/" end subroutine print_default_namelist end module atomic_tables program generate_tables !+ Tabulates cross sections and reaction rates and writes them to a HDF5 file use atomic_tables use H5LT use HDF5 use hdf5_extra #ifdef _OMP use omp_lib #endif character(len=200) :: namelist_file character(len=3) :: arg character(len=200) :: tables_file = '' integer :: n_max, m_max integer, dimension(8) :: time_arr, time_start, time_end integer :: hour, minu, sec integer :: argc, max_threads, nthreads integer(HID_T) :: fid, gid integer :: error logical :: exis NAMELIST /general_settings/ n_max, m_max, tables_file argc = command_argument_count() if(argc.eq.0) then call print_default_namelist() stop endif if(argc.ge.1) then call get_command_argument(1, namelist_file) endif inquire(file=namelist_file,exist=exis) if(.not.exis) then write(*,'(a,a)') 'Input file does not exist: ',trim(namelist_file) stop else open(13,file=namelist_file) read(13,NML=general_settings) close(13) n_max = min(n_max,15) m_max = min(m_max,15) endif write(*,'(a)') "---- General settings ----" write(*,'(T2,"n_max = ",i2)') n_max write(*,'(T2,"m_max = ",i2)') m_max write(*,'(T2,"Tables File: ",a)') trim(tables_file) write(*,*) '' #ifdef _OMP max_threads = OMP_get_num_procs() if(argc.ge.2) then call get_command_argument(2,arg) read(arg,'(i3)') nthreads else nthreads = max_threads endif max_threads = min(nthreads,max_threads) write(*,'(a)') "---- OpenMP settings ----" write(*,'(T2,"Number of threads: ",i2)') max_threads write(*,*) '' call OMP_set_num_threads(max_threads) #endif !! Check if compression is possible call check_compression_availability() call date_and_time (values=time_start) !! Open HDF5 Interface call h5open_f(error) !! Create tables file. Overwrites if already exists call h5fcreate_f(tables_file, H5F_ACC_TRUNC_F, fid, error) !! Create group for cross sections call h5gcreate_f(fid, "cross", gid, error) !! Calculate cross sections call date_and_time(values=time_arr) write(*,"(A,I2,A,I2.2,A,I2.2)") 'Cross Sections: ',time_arr(5),':',time_arr(6),':',time_arr(7) call write_bb_H_H(gid, namelist_file, n_max, m_max) call write_bb_H_e(gid, namelist_file, n_max, m_max) call write_bb_H_Aq(gid, namelist_file, n_max, m_max) call write_bb_D_D(gid, namelist_file) !! Close cross section group call h5gclose_f(gid, error) !! Create group for reaction rates call h5gcreate_f(fid, "rates", gid, error) !! Calculate reaction rates call date_and_time(values=time_arr) write(*,"(A,I2,A,I2.2,A,I2.2)") 'Reaction Rates: ',time_arr(5),':',time_arr(6),':',time_arr(7) call write_bt_H_H(gid, namelist_file, n_max, m_max) call write_bt_H_e(gid, namelist_file, n_max, m_max) call write_bt_H_Aq(gid, namelist_file, n_max, m_max) call write_einstein(gid, n_max, m_max) call write_bt_D_D(gid, namelist_file) !! Close reaction rates group call h5gclose_f(gid, error) !! Add group attributes call h5ltset_attribute_string_f(fid, "/", "description", & "Atomic Cross Sections and Rates", error) call h5ltset_attribute_string_f(fid, "cross", "description", & "Atomic Cross Sections", error) call h5ltset_attribute_string_f(fid, "rates", "description", & "Atomic Reaction Rates", error) !! Close file and HDF5 interface call h5fclose_f(fid, error) call h5close_f(error) write(*,'(a)') "Atomic tables written to "//trim(tables_file) write(*,*) '' call date_and_time (values=time_arr) write(*,'(A,I2,":",I2.2,":",I2.2)') 'END: hour, minute, second: ',time_arr(5), time_arr(6),time_arr(7) call date_and_time (values=time_end) hour = time_end(5) - time_start(5) minu = time_end(6) - time_start(6) sec = time_end(7) - time_start(7) if (minu.lt.0.) then minu = minu +60 hour = hour -1 endif if (sec.lt.0.) then sec = sec +60 minu = minu -1 endif write(*,'(A,18X,I2,":",I2.2,":",I2.2)') 'duration:',hour,minu,sec end program