Calculates halo neutral density and spectra
subroutine halo
!+ Calculates halo neutral density and spectra
integer :: ic,i,j,k,ncell
integer(Int64) :: ihalo !! counter
real(Float64), dimension(3) :: ri !! start position
real(Float64), dimension(3) :: vihalo!! velocity bulk plasma ion
integer,dimension(3) :: ind, tind !! actual cell
!! Determination of the CX probability
type(LocalProfiles) :: plasma
real(Float64), dimension(nlevs) :: denn !! neutral dens (n=1-4)
real(Float64), dimension(nlevs) :: rates !! CX rates
!! Collisiional radiative model along track
real(Float64), dimension(nlevs) :: states ! Density of n-states
integer :: ntrack
type(ParticleTrack), dimension(beam_grid%ntrack) :: tracks !! Particle Tracks
integer :: ii,jj,kk,it,is
real(Float64) :: tot_denn, photons !! photon flux
integer, dimension(beam_grid%ngrid) :: cell_ind
real(Float64), dimension(beam_grid%nx,beam_grid%ny,beam_grid%nz) :: papprox
integer(Int32), dimension(beam_grid%nx,beam_grid%ny,beam_grid%nz) :: nlaunch
real(Float64) :: local_iter_dens
type(NeutralPopulation) :: cur_pop, prev_pop
!! Halo iteration
integer(Int64) :: hh, n_halo !! counters
real(Float64) :: dcx_dens, halo_iter_dens(2), seed_dcx
integer :: prev_type = 1 ! previous iteration
integer :: cur_type = 2 ! current iteration
real(Float64) :: fi_correction
!! Initialize Neutral Population
call init_neutral_population(neut%halo)
dcx_dens = sum(neut%dcx%dens)
halo_iter_dens(prev_type) = dcx_dens
if(dcx_dens.eq.0) then
if(inputs%verbose.ge.0) then
write(*,'(a)') 'HALO: Density of DCX-neutrals is zero'
endif
stop
endif
n_halo = inputs%n_halo
!! Allocate previous neutral populations
call init_neutral_population(prev_pop)
prev_pop = neut%dcx
seed_dcx = 1.0
iterations: do hh=1,200
!! Allocate/Reallocate current population
call init_neutral_population(cur_pop)
halo_iter_dens(cur_type) = 0.d0
!! Calculate how many mc markers to launch in each cell
papprox = 0.d0
cell_ind = 0
ncell = 0
do ic=1,beam_grid%ngrid
call ind2sub(beam_grid%dims,ic,ind)
i = ind(1) ; j = ind(2) ; k = ind(3)
call get_plasma(plasma,ind=ind)
if(.not.plasma%in_plasma) cycle
tot_denn = sum(prev_pop%dens(:,i,j,k))
papprox(i,j,k)= tot_denn*sum(plasma%deni)
if(papprox(i,j,k).gt.0.0) then
ncell = ncell + 1
cell_ind(ncell) = ic
endif
enddo
call get_nlaunch(n_halo, papprox, nlaunch)
if(inputs%verbose.ge.1) then
write(*,'(T6,"# of markers: ",i10," --- Seed/DCX: ",f5.3)') sum(nlaunch), seed_dcx
endif
!$OMP PARALLEL DO schedule(dynamic,1) private(i,j,k,ic,ihalo,ii,jj,kk,it,is,ind,vihalo, &
!$OMP& ri,tracks,ntrack,rates,denn,states,photons,plasma,tind,fi_correction)
loop_over_cells: do ic=istart,ncell,istep
call ind2sub(beam_grid%dims,cell_ind(ic),ind)
i = ind(1) ; j = ind(2) ; k = ind(3)
loop_over_species: do is=1,n_thermal !This loop has to come first
!! Loop over the markers
loop_over_halos: do ihalo=1, nlaunch(i,j,k)
!! Calculate ri,vhalo and track
call mc_beam_grid(ind, ri)
call get_plasma(plasma, pos=ri)
call mc_halo(plasma, thermal_mass(is), vihalo)
call track(ri,vihalo,tracks,ntrack)
if(ntrack.eq.0)cycle loop_over_halos
!! Get plasma parameters at particle location
call get_plasma(plasma, pos=ri)
!! Calculate CX probability
tind = tracks(1)%ind
ii = tind(1); jj = tind(2); kk = tind(3)
call neutral_cx_rate(prev_pop%dens(:,ii,jj,kk), prev_pop%res(ii,jj,kk), vihalo, rates)
if(sum(rates).le.0.)cycle loop_over_halos
!! Get plasma parameters at mean point in cell
call get_plasma(plasma, pos=tracks(1)%pos)
!! Weight CX rates by ion source density
if(beam_mass.eq.thermal_mass(is)) then
states = rates*(plasma%deni(is) + plasma%denf)
if(sum(states).eq.0) cycle loop_over_halos
fi_correction = max(plasma%deni(is)/(plasma%deni(is)+plasma%denf),0.d0)
else
states = rates*plasma%deni(is)
if(sum(states).eq.0) cycle loop_over_halos
fi_correction = 1.d0
endif
loop_along_track: do it=1,ntrack
call get_plasma(plasma,pos=tracks(it)%pos)
if(.not.plasma%in_plasma) exit loop_along_track
call colrad(plasma,thermal_mass(is),vihalo,tracks(it)%time,states,denn,photons)
!! Store Neutrals
call update_neutrals(cur_pop, tracks(it)%ind, vihalo, denn/nlaunch(i,j,k))
photons = fi_correction*photons !! Correct for including fast-ions in states
if((photons.gt.0.d0).and.(inputs%calc_halo.ge.1)) then
call store_photons(tracks(it)%pos,vihalo,thermal_lambda0(is), &
photons/nlaunch(i,j,k),spec%halo(:,:,:,is),spec%halostokes(:,:,:,:,is))
endif
if((photons.gt.0.d0).and.(inputs%calc_res.ge.1)) then
call store_photon_birth(tracks(1)%pos, photons/nlaunch(i,j,k), spatres%halo)
endif
enddo loop_along_track
enddo loop_over_halos
enddo loop_over_species
enddo loop_over_cells
!$OMP END PARALLEL DO
#ifdef _MPI
!! Combine densities
call parallel_merge_populations(cur_pop)
#endif
halo_iter_dens(cur_type) = sum(cur_pop%dens)
if(halo_iter_dens(cur_type)/halo_iter_dens(prev_type).gt.1.0) then
write(*,'(a)') "HALO: Halo generation density exceeded seed density. This shouldn't happen."
exit iterations
endif
!! Set current generation to previous generation
halo_iter_dens(prev_type) = halo_iter_dens(cur_type)
prev_pop = cur_pop
!! merge current population with halo population
call merge_neutral_populations(neut%halo, cur_pop)
seed_dcx = halo_iter_dens(cur_type)/dcx_dens
if(isnan(seed_dcx)) then
write(*,'(a)') "NAN (Halo generation)/DCX. Exiting..."
stop
endif
n_halo=int(inputs%n_halo*seed_dcx,Int64)
if(seed_dcx.lt.0.01) exit iterations
enddo iterations
call free_neutral_population(cur_pop)
call free_neutral_population(prev_pop)
#ifdef _MPI
!! Combine Spectra
if(inputs%calc_halo.ge.1) then
call parallel_sum(spec%halo)
endif
if(inputs%calc_res.ge.1) then
do jj=1,spec_chords%nchan
call parallel_merge_reservoirs(spatres%halo(jj)
enddo
endif
#endif
end subroutine halo