Calculates FIDA weights
subroutine fida_weights_mc
    !+ Calculates FIDA weights
    integer :: i,j,k,ic,ncell
    integer(Int64) :: iion,ip
    real(Float64), dimension(3) :: ri,rg      !! start position
    real(Float64), dimension(3) :: vi     !! velocity of fast ions
    integer, dimension(3) :: ind      !! new actual cell
    integer,dimension(5) :: neut_types=[1,2,3,4,5]
    logical :: los_intersect
    !! Determination of the CX rates
    type(LocalProfiles) :: plasma
    type(LocalEMFields) :: fields
    real(Float64), dimension(nlevs) :: rates !! CX rates
    !! Collisiional radiative model along track
    integer :: ntrack
    integer :: jj      !! counter along track
    type(ParticleTrack),dimension(beam_grid%ntrack) :: tracks
    real(Float64) :: photons !! photon flux
    real(Float64), dimension(nlevs) :: states  !! Density of n-states
    real(Float64), dimension(nlevs) :: denn
    integer :: nwav
    real(Float64) :: etov2, energy, pitch
    real(Float64) :: dE, dP, dEdP
    real(Float64), dimension(:), allocatable :: ebarr, ptcharr
    integer, dimension(1) :: ienergy, ipitch
    real(Float64), dimension(3) :: randomu3
    !! Number of particles to launch
    real(Float64) :: fbm_denf,phase_area
    integer, dimension(beam_grid%ngrid) :: cell_ind
    real(Float64), dimension(beam_grid%nx,beam_grid%ny,beam_grid%nz) :: papprox
    integer(Int32), dimension(beam_grid%nx,beam_grid%ny,beam_grid%nz) :: nlaunch
    nwav = inputs%nlambda_wght
    !! define arrays
    !! define energy - array
    allocate(ebarr(inputs%ne_wght))
    do i=1,inputs%ne_wght
        ebarr(i)=real(i-0.5)*inputs%emax_wght/real(inputs%ne_wght)
    enddo
    dE = abs(ebarr(2)-ebarr(1))
    !! define pitch - array
    allocate(ptcharr(inputs%np_wght))
    do i=1,inputs%np_wght
        ptcharr(i)=real(i-0.5)*2./real(inputs%np_wght)-1.
    enddo
    dP = abs(ptcharr(2)-ptcharr(1))
    dEdP = dE*dP
    phase_area = dEdP*real(inputs%np_wght)*real(inputs%ne_wght)
    !! allocate storage arrays
    allocate(fweight%weight(nwav,inputs%ne_wght,inputs%np_wght,spec_chords%nchan))
    allocate(fweight%mean_f(inputs%ne_wght,inputs%np_wght,spec_chords%nchan))
    if(inputs%verbose.ge.1) then
        write(*,'(T3,"Number of Channels: ",i5)') spec_chords%nchan
        write(*,'(T3,"Nlambda: ",i4)') nwav
        write(*,'(T3,"Nenergy: ",i3)') inputs%ne_wght
        write(*,'(T3,"Maximum Energy: ",f7.2)') inputs%emax_wght
        write(*,'(T3,"LOS averaged: ",a)') "False"
    endif
    !! zero out arrays
    fweight%weight = 0.d0
    fweight%mean_f = 0.d0
    etov2 = 1.d0/(v2_to_E_per_amu*beam_mass)
    !! Estimate how many particles to launch in each cell
    papprox=0.d0
    do ic=1,beam_grid%ngrid
        call ind2sub(beam_grid%dims,ic,ind)
        i = ind(1) ; j = ind(2) ; k = ind(3)
        call get_plasma(plasma,ind=ind)
        if(.not.plasma%in_plasma) cycle
        papprox(i,j,k)=(sum(neut%full%dens(:,i,j,k)) + &
                        sum(neut%half%dens(:,i,j,k)) + &
                        sum(neut%third%dens(:,i,j,k)) + &
                        sum(neut%dcx%dens(:,i,j,k)) + &
                        sum(neut%halo%dens(:,i,j,k)))
    enddo
    ncell = 0
    do ic=1,beam_grid%ngrid
        call ind2sub(beam_grid%dims,ic,ind)
        i = ind(1) ; j = ind(2) ; k = ind(3)
        if(papprox(i,j,k).gt.0.0) then
            ncell = ncell + 1
            cell_ind(ncell) = ic
        endif
    enddo
    call get_nlaunch(10*inputs%n_fida,papprox, nlaunch)
    if(inputs%verbose.ge.1) then
        write(*,'(T6,"# of markers: ",i10)') sum(nlaunch)
    endif
    !! Loop over all cells that have neutrals
    !$OMP PARALLEL DO schedule(guided) private(ic,i,j,k,ind,iion,vi,ri,rg,ienergy,ipitch, &
    !$OMP tracks,ntrack,jj,plasma,fields,rates,denn,states,photons,energy,pitch, &
    !$OMP los_intersect,randomu3,fbm_denf)
    loop_over_cells: do ic = istart, ncell, istep
        call ind2sub(beam_grid%dims,cell_ind(ic),ind)
        i = ind(1) ; j = ind(2) ; k = ind(3)
        loop_over_fast_ions: do iion=1, nlaunch(i, j, k)
            !! Sample fast ion distribution uniformally
            call randind(inputs%ne_wght, ienergy)
            call randind(inputs%np_wght, ipitch)
            call randu(randomu3)
            energy = ebarr(ienergy(1)) + dE*(randomu3(1)-0.5)
            pitch = ptcharr(ipitch(1)) + dP*(randomu3(2)-0.5)
            if(energy.le.0) cycle loop_over_fast_ions
            call randu(randomu3)
            rg = [beam_grid%xc(i),beam_grid%yc(j),beam_grid%zc(k)] + beam_grid%dr*(randomu3-0.5)
            !! Get velocity
            call get_fields(fields,pos=rg)
            if(.not.fields%in_plasma) cycle loop_over_fast_ions
            call gyro_correction(fields,energy,pitch,fbm%A,ri,vi)
            fbm_denf = 0.0
            if (inputs%dist_type.eq.1) then
                call get_ep_denf(energy,pitch,fbm_denf,coeffs=fields%b)
            endif
            !! Find the particles path through the beam grid
            call track(ri, vi, tracks, ntrack, los_intersect)
            if(.not.los_intersect) cycle loop_over_fast_ions
            if(ntrack.eq.0) cycle loop_over_fast_ions
            !! Calculate CX probability with beam and halo neutrals
            call get_total_cx_rate(tracks(1)%ind, ri, vi, neut_types, rates)
            if(sum(rates).le.0.) cycle loop_over_fast_ions
            states=rates*1.d20
            !! Calculate the spectra produced in each cell along the path
            loop_along_track: do jj=1,ntrack
                call get_plasma(plasma,pos=tracks(jj)%pos)
                call colrad(plasma, beam_mass, vi, tracks(jj)%time, states, denn, photons)
                call store_fw_photons(ienergy(1), ipitch(1), &
                     tracks(jj)%pos, vi, beam_lambda0, fbm_denf, photons/nlaunch(i,j,k))
            enddo loop_along_track
        enddo loop_over_fast_ions
    enddo loop_over_cells
    !$OMP END PARALLEL DO
    fweight%weight = ((1.d-20)*phase_area/dEdP)*fweight%weight
    fweight%mean_f = ((1.d-20)*phase_area/dEdP)*fweight%mean_f
    if(inputs%verbose.ge.1) then
        write(*,*) 'write fida weights:    ' , time_string(time_start)
    endif
#ifdef _MPI
    call parallel_sum(fweight%weight)
    call parallel_sum(fweight%mean_f)
    if(my_rank().eq.0) call write_fida_weights()
#else
    call write_fida_weights()
#endif
end subroutine fida_weights_mc