Calculate Active FIDA emission using a Monte Carlo Fast-ion distribution
subroutine fida_mc
!+ Calculate Active FIDA emission using a Monte Carlo Fast-ion distribution
integer :: iion,igamma,ngamma
type(FastIon) :: fast_ion
type(LocalEMFields) :: fields
type(LocalProfiles) :: plasma
real(Float64) :: phi
real(Float64), dimension(3) :: ri !! start position
real(Float64), dimension(3) :: vi !! velocity of fast ions
!! Determination of the CX probability
real(Float64), dimension(nlevs) :: denn !! neutral dens (n=1-4)
real(Float64), dimension(nlevs) :: rates !! CX rates
!! Collisiional radiative model along track
real(Float64), dimension(nlevs) :: states ! Density of n-states
integer :: ntrack
type(ParticleTrack), dimension(beam_grid%ntrack) :: tracks
logical :: los_intersect
integer :: jj !! counter along track
real(Float64) :: photons !! photon flux
integer, dimension(5) :: neut_types=[1,2,3,4,5]
real(Float64), dimension(3) :: uvw, uvw_vi
real(Float64) :: s, c
real(Float64), dimension(1) :: randomu
ngamma = 1
if(particles%axisym.or.(inputs%dist_type.eq.2)) then
ngamma = ceiling(dble(inputs%n_fida)/particles%nparticle)
endif
if(inputs%verbose.ge.1) then
write(*,'(T6,"# of markers: ",i10)') int(particles%nparticle*ngamma,Int64)
endif
!$OMP PARALLEL DO schedule(dynamic,1) private(iion,igamma,fast_ion,vi,ri,phi,tracks,s,c, &
!$OMP& randomu,plasma,fields,uvw,uvw_vi,ntrack,jj,rates,denn,los_intersect,states,photons)
loop_over_fast_ions: do iion=istart,particles%nparticle,istep
fast_ion = particles%fast_ion(iion)
if(fast_ion%vabs.eq.0) cycle loop_over_fast_ions
if(.not.fast_ion%beam_grid_cross_grid) cycle loop_over_fast_ions
gamma_loop: do igamma=1,ngamma
if(particles%axisym) then
!! Pick random toroidal angle
call randu(randomu)
phi = fast_ion%beam_grid_phi_enter + fast_ion%delta_phi*randomu(1)
else
phi = fast_ion%phi
endif
s = sin(phi)
c = cos(phi)
!! Calculate position in machine coordinates
uvw(1) = fast_ion%r*c
uvw(2) = fast_ion%r*s
uvw(3) = fast_ion%z
!! Convert to beam grid coordinates
call uvw_to_xyz(uvw, ri)
if(inputs%dist_type.eq.2) then
!! Get electomagnetic fields
call get_fields(fields, pos=ri)
!! Correct for gyro motion and get particle position and velocity
call gyro_correction(fields, fast_ion%energy, fast_ion%pitch, ri, vi)
else !! Full Orbit
!! Calculate velocity vector
uvw_vi(1) = c*fast_ion%vr - s*fast_ion%vt
uvw_vi(2) = s*fast_ion%vr + c*fast_ion%vt
uvw_vi(3) = fast_ion%vz
vi = matmul(beam_grid%inv_basis,uvw_vi)
endif
!! Track particle through grid
call track(ri, vi, tracks, ntrack, los_intersect)
if(.not.los_intersect) cycle gamma_loop
if(ntrack.eq.0)cycle gamma_loop
!! Calculate CX probability
call get_beam_cx_rate(tracks(1)%ind,ri,vi,beam_ion,neut_types,rates)
if(sum(rates).le.0.)cycle gamma_loop
!! Weight CX rates by ion source density
states=rates*fast_ion%weight*(fast_ion%delta_phi/(2*pi))/beam_grid%dv/ngamma
!! Calculate the spectra produced in each cell along the path
loop_along_track: do jj=1,ntrack
call get_plasma(plasma,pos=tracks(jj)%pos)
call colrad(plasma,beam_ion, vi, tracks(jj)%time, states, denn, photons)
call store_fida_photons(tracks(jj)%pos, vi, photons, fast_ion%class)
enddo loop_along_track
enddo gamma_loop
enddo loop_over_fast_ions
!$OMP END PARALLEL DO
#ifdef _MPI
call parallel_sum(spec%fida)
#endif
end subroutine fida_mc